枝の選択
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/03/31 07:10 UTC 版)
もっと別な方法を用いれば、各非零複素数に対して対数を一つずつ選んでできる函数 L(z) が C* の全ての点上で連続となることができるであろうか、残念ながら答えは「否」である。その理由を見るために、そのような対数函数を単位円に沿って追跡する(つまり、L を、θ が 0 から 2π まで増加させるときの、eiθ において評価する)ことを考えよう。簡単のため、初期値は L(1) = 0 と仮定すれば、 θ の増加につれて L(z) が連続なるためには L(eiθ) は iθ に一致しなければならない(差は離散集合 2πiZ に値をとる θ の連続函数でなければならないから)。特に、L(e2πi) = 2πi でなければならないが、そもそも e2πi = 1 なのだから、これは L(1) = 0 の仮定に反する。 したがって、複素数に対して定義された連続な対数函数を得るためには、定義域をガウス平面のより小さな部分集合 U に制限することが必要となる。目的の一つとしてその函数が微分可能となるようにしたいので、定義域の各点の近傍においてそれが定義されていると仮定することには意味がある。つまり U としては開集合をとるべきである。また、U の異なる連結成分上で定義される函数値は互いに関連性がないものに取り得ることを考えれば、U が連結と仮定することも自然である。そういったことを取り纏めて、この文脈では枝を以下のようなものとして定める: 定義 log z の枝 (branch) とは、ガウス平面 C 内の連結開集合 U 上で定義された連続函数 L であって、U の各点 z に対する各値 L(z) が z の対数となっているようなものを言う。 例えば、主値はガウス平面から負の実軸と原点を除いた開集合 C ∖ R≤0 上で連続な枝を定義する。 別な例としてメルカトル級数 ln ( 1 + u ) = ∑ n = 1 ∞ ( − 1 ) n + 1 n u n = u − u 2 2 + u 3 3 − ⋯ {\displaystyle \ln(1+u)=\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n}}u^{n}=u-{\frac {u^{2}}{2}}+{\frac {u^{3}}{3}}-\cdots } は円板 |u| < 1 上で局所一様収束するから、z = 1 + u と置けば、1 を中心とする半径 1 の円板上での log z の枝を得る。 一つ枝をとって固定する場合には、紛れの虞がないならば単に "log z" と書くことができる。異なる枝は特定の複素数の対数に対して異なる値を割り当て得るから、それゆえに "log z" が明確な意味を持つようにするためには、「あらかじめ」枝を固定しておかなければならない。
※この「枝の選択」の解説は、「複素対数函数」の解説の一部です。
「枝の選択」を含む「複素対数函数」の記事については、「複素対数函数」の概要を参照ください。
- 枝の選択のページへのリンク