複素対数函数とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 複素対数函数の意味・解説 

複素対数函数

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/02/09 03:01 UTC 版)

複素対数の枝の一つ: 色相偏角を、彩度明度絶対値を表す。(カラーエンコードの詳細は画像をクリック)

複素解析における複素対数関数(ふくそたいすうかんすう、: complex logarithm)は、実自然対数関数実自然指数関数の逆関数であるのと同様の意味において、複素指数関数逆「関数」である。すなわち、複素数 z対数 w とは ew = z を満たす複素数を言い[1]、そのような wln zlog z などと書く。任意の非零複素数 z は無限個の対数を持つ[1]から、そのような表記が紛れのない意味を為すように気を付けねばならない。

極形式を用いて z = re (r > 0) と書くならば、w = ln r + z の対数の一つを与えるが、これに 2πi の任意の整数倍を加えたもので z の対数はすべて尽くされる[1]

複素指数関数の逆関数

複素対数関数の多価なる虚部を枝が分かるように描いたもの。複素数 z が原点を周れば、対数の虚部が上下する。これにより、原点はこの関数の分岐点となる。

逆関数を持つためには、関数は一対一(単射)でなければならないが、複素指数関数は単射でない(実際、任意の w とすべての整数nに対して ew+2nπi = ew が成り立つことが、w を加える操作が ew を反時計回りに θ ラジアン回転させることから言える)し、さらに悪いことに垂直線上に等間隔に並ぶ無限個の複素数の列

z-平面において、Re(Log z) = (定数) の描く円と Im(Log z) = (定数) の描く半直線
命題
正則関数 f: UC がすべての点 zU において f′(z) ≠ 0 を満たすならば、f等角写像である。すなわち、U の点 a を通るに曲線が角 α を成す(これは a における両曲線の接線の成す角が α であるという意味である)ならば、それらに曲線の f による像も f(a) において同じ角 α を成す。

log z の枝は、正則かつ導関数 1/zU 上で消えないから、上記の命題により等角写像を定める。

例えば、主枝 w = Log zCR≤0 から垂直帯状領域 |Im z| < π への写像と見て上記の性質を満たすから、等角性を極形式で書いた直接の帰結として以下のことが言える:

  • z-平面の原点を中心とする円[注釈 4]w-平面内の aπi から a + πi へ結ぶ垂直線分に写される。ただし、a は円の半径の実対数である。
  • z-平面の原点から放たれる半直線は w-平面の水平線に写される。

上記の z-平面上の各円と各半直線は直角に交わる。それらの Log による像はそれぞれ w-平面の垂直線分と水平線だから、それらも直角に交わる。これは主枝 Log の等角性の発露の一つである。

対数関数のリーマン面

log z のリーマン面の視覚化: このイラストでは曲面はガウス平面の原点に対応する垂直線の周りに螺旋を描くように見えるが、実際のリーマン面は水平方向にも垂直方向にも無限に広がっているし、このイラストのように途切れてはいない。

構成

log z の複数の枝を貼り合わせて一つの関数 log: C* → C を得ることは、二つの相異なる枝がそれらの両方が定義される点においてさえ異なる値をとり得ることにより、不可能である。例えば CR≤0 上で定義され、虚部 θ(−π, π) に入る主枝 Log z と、CR≤0 上で定義され、虚部 θ(0, 2π) に入る枝 L(z) とは、上半平面では一致するが下半平面では一致しないから、これらの枝の定義域を「上半平面のコピーに沿ってだけ」貼り合わせることには意味を持たせることができる。貼り合わせで得られる領域は連結だが下半平面のコピーは二つ持つ。これら二つのコピーを二階建ての駐車場に譬えると、Log の階の下半平面から L の階の下半平面まで、0 を反時計回りに360°周って行くことができる。それには、Log の階で初めて正の実軸をまたいだときに共有された上半平面に入り、L の階の負の実軸をまたいで L の階の下半平面に入るのである。

同様の貼り合わせを、虚部 θ(π, 3π) に入る枝、(2π, 4π) に入る枝、…… に対して、あるいは別方向の、虚部 θ(−2π, 0) に入る枝、(−3π, −π) に入る枝、…… とどんどん続けることができる。そうして最終的に得られる連結な曲面は、先ほどの駐車場の喩えで言えば、上にも下にも無限に伸びる無数の階が螺旋状に連なった駐車場になる。この曲面を複素対数関数 log z に付随するリーマン面 R と呼ぶ。

対数のリーマン面 R 上の点は、複素数 z とその偏角の取り得る値 θ との対 (z, θ) と考えることができる。これにより RC × RR3 に埋め込める。

リーマン面上の関数

各枝の定義域はそれらの値が一致する開集合に沿ってしか貼り合わされないから、貼り合わせで一つの矛盾なく定義された関数logR: RC が与えられる[注釈 5]。この関数は各点 (z, θ) ∈ Rln |z| + に写す。もともとの枝 Log に両立する正則関数を貼り合わせて拡張する過程は解析接続と呼ばれる。

リーマン面 R から C* への(螺旋を「平らに」押しつぶす)「射影」が存在して、(z, θ)z に写される。任意の zC* に対して、z の「真上」にある全ての点 (z, θ) ∈ R をとって、それらの点を logR で評価すれば、z の対数がすべて得られる。

すべての枝の張り合わせ

上でやったように、特定の枝を選んで貼り合わせる代わりに、log zすべての枝をとって、枝の対 L1: U1C, L2: U2CU1U2L1L2 が一致する最大の開部分集合に沿って貼り合わせることを、任意の対に対して同時に行っても、前節のと同じリーマン面 R と関数 logR が得られる。このやり方は、絵に描くことはやや困難だが、特定の枝をどのように選ぶかは問わない点で、より自然である。

U′R の開部分集合で、その射影像 UC* と全単射ならば、logRU′ への制限は U 上定義された log z の枝に対応する。log z の任意の枝はこの方法で得られる。

普遍被覆として

射影 RC*RC*被覆空間として実現する。実はこれは、((z, θ)(z, θ + 2π) に写す同相写像が生成する)Z に同型なデッキ変換英語版群を持つガロワ被覆英語版になる。

複素多様体として R は、logR を通じて C双正則である(逆写像は z(ez, Im z) に写す)。これは R単連結であることを示しており、したがって RC*普遍被覆となる。

応用

  • 複素対数関数は複素数の複素数乗を定義するのに必要である。具体的に、複素数 a, b (a ≠ 0) に対し、対数主値を用いて

外部リンク



このページでは「ウィキペディア」から複素対数函数を検索した結果を表示しています。
Weblioに収録されているすべての辞書から複素対数函数を検索する場合は、下記のリンクをクリックしてください。
 全ての辞書から複素対数函数 を検索

英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

カテゴリ一覧

すべての辞書の索引



Weblioのサービス

「複素対数函数」の関連用語











複素対数函数のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



複素対数函数のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの複素対数函数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS