複素多様体の意味
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/07/15 14:16 UTC 版)
正則函数は実数の上での滑らかな函数よりも強い条件を満たすから、微分可能多様体の理論と複素多様体の理論とでは大きな違いがある。また、コンパクトな複素多様体は、微分可能多様体よりも代数多様体に非常に近い多様体である。 例えば、ホイットニーの埋め込み定理(英語版)により、すべての n-次元微分可能多様体は R 2 n {\displaystyle \mathbb {R} ^{2n}} の中へ微分可能部分多様体として埋め込まれるが、複素多様体がCn の中へ正則に埋め込まれるようなことは『まれ』である。例えば、コンパクトな連結多様体 M を考えてみると、M 上の任意の正則函数は、リウヴィルの定理により局所定数となる。ここで、もしも Cn の中への M の正則な埋め込みがあったとすると、Cn の座標函数は M の上の定数ではない正則函数に限定されてしまう。これは、M が一点の場合を除き、コンパクト性と矛盾する。Cn へ埋め込むことができる複素多様体のことをシュタイン多様体と言い、たとえば微分可能な複素アフィン代数多様体などを含む、非常に特別な多様体のクラスとなる。 複素多様体の分類は、微分可能多様体の分類よりも微妙である。例えば、次元が4以外では、与えられた位相多様体は高々有限個の微分可能構造(英語版)を持つのに対して、複素構造を持った位相多様体は非可算個の複素構造を持つことができる場合もよくある。リーマン面は複素構造を持った2次元の多様体のことを言い、種数で分類され、この現象の重要な例となる。与えられた向きづけ可能な曲面上の複素構造の集合は、双正則同値を同一視して、モジュライ空間と呼ばれる複素代数多様体を形成する。この構造は現在、活発に研究されている領域である。 座標変換は双正則であるので、複素多様体は微分可能であり、標準的に向きづけられている(複素多様体であれば、向き付け可能である:Cn (の部分集合)への双正則写像は、向きづけを保存する。)
※この「複素多様体の意味」の解説は、「複素多様体」の解説の一部です。
「複素多様体の意味」を含む「複素多様体」の記事については、「複素多様体」の概要を参照ください。
- 複素多様体の意味のページへのリンク