正則関数
複素解析における正則関数[注 1](せいそくかんすう、英: regular analytic function[2]:124)あるいは整型函数[注 2][3](せいけいかんすう、英: holomorphic function[注 3])とは、ガウス平面上あるいはリーマン面上のある領域について、常に微分可能な複素変数、複素数値函数を指す[5][6][7]。
概要
正則関数とは、複素関数(複素数を変数とし、複素数に値をもつ関数)のうちで、対象とする領域内の全ての点において微分可能な関数である。すべての点で微分可能という性質は「正則性」と呼ばれる[5][6][7]。多項式関数や指数関数、三角関数、対数関数、ガンマ関数、ゼータ関数など、複素解析において中心的な役割を演じる多くの関数はこの正則性を備える[8][9]。
正則な複素関数は、その導関数も正則である。すなわち微分操作を無制限に繰り返してよい[6]。実変数関数のように導関数が微分不可能となり微分回数が制限されることは起きない。微分可能回数について言い及ぶこともない。実数関数と勝手の全く異なる点である。
複素関数の微分可能性の特徴は、その微分の定義に起因する。複素関数の微分は実数軸および虚数軸という2次元平面内の任意の方位に沿って見積もられうるが、これをすべて一意とする。すなわちどの方位をみても同一の値をとるものとして定義されている。したがって方位を決めて一度に一方向しか見ない実数空間の偏微分よりも、複素変数空間の微分の方が制約が厳しい。連続であるだけでは十分でない。
ある任意の点についてみたときの周辺の増減がその点に対し軸対称であると正則である。これを満たすとき実数成分および虚数成分を表す関数はそれぞれ調和関数である。また実数成分および虚数成分の偏導関数はコーシー・リーマンの方程式を満たす[10][11](ただし逆は真ではない)。
正則函数が解析的であること:複素解析における正則関数は何回でも微分可能であり、したがって冪級数に展開できる。複素関数に関して、それが正則であることと解析関数であることとは同義である。また、一致の定理により正則関数はその特異点を含まない領域へ一意的に拡張(解析接続)できる場合がある[5][6][7]。
ガウス平面の全域で正則である複素関数は整関数と呼ばれる。また、正則関数の商として得られる関数は有理型関数という[5][6][7]。
定義
ガウス平面 C 内の開集合 D と D 上で定義される複素関数 f(z) について、a ∈ D に対し極限
正則函数
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/12/21 13:52 UTC 版)
詳細は「正則関数」を参照 D を複素数平面 C の領域とする。 複素函数 f : D → C が正則であるとは、定義域 D の各点で複素微分可能であることである。実部と虚部に分けて考えると、f が正則である必要十分条件は、Re f, Im f が微分可能で、コーシー・リーマンの方程式を満たすことである。例えば、複素函数 f ( z ) = z ¯ {\displaystyle f(z)={\overline {z}}} や f ( z ) = | z | {\displaystyle f(z)=|z|} は正則でない。これらはコーシー・リーマンの方程式を満たさず複素微分可能でない。 複素解析には実解析に無いいくつかの特徴がある。 正則函数は解析関数である(正則関数の解析性)。したがって、正則函数は何回でも微分可能である。 2つの正則函数 f, g が D のある小さな、正則曲線上で一致するならば、それらは全体でも一致する(一致の定理、解析接続)。 有理型函数は、局所的には正則函数 f を用いて f(z)/(z − z0)n で近似でき、正則函数といくつかの特徴が共通する。有理型でない函数は真性特異点をもつ(例えばsin 1/z は z = 0 で真性特異点を持つ)。
※この「正則函数」の解説は、「複素数」の解説の一部です。
「正則函数」を含む「複素数」の記事については、「複素数」の概要を参照ください。
- 正則函数のページへのリンク