有理型関数とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 有理型関数の意味・解説 

有理型関数

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/08/24 20:30 UTC 版)

ガンマ関数は全複素平面で有理型である。

複素解析において、有理型関数(ゆうりけいかんすう、ゆうりがたかんすう、: meromorphic function)あるいは、関数有理型(ゆうりけい、meromorphic)であるとは、(複素数平面あるいは連結)リーマン面のある領域で定義され、その中で(仮性特異点)以外の特異点を持たない解析関数(特異点以外では正則な関数)であって極全体の集合が離散集合であるような複素関数のことを指す。

有理型関数は正則関数として表すことができ、その分母となる正則関数の零点が元の有理型関数の極となる(分母は定数関数 0 ではない)。

多項式関数は正則であるから、例えば この項目は、解析学に関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めていますプロジェクト:数学Portal:数学)。




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「有理型関数」の関連用語

有理型関数のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



有理型関数のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの有理型関数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS