正則グラフ
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/06/24 16:09 UTC 版)
正則グラフ(せいそくグラフ、英: regular graph)は、グラフ理論において、各頂点の隣接する頂点数が全て同じであるようなグラフである。すなわち、全ての頂点の次数が等しい。頂点の次数が k の正則グラフを 「k-正則グラフ」または「次数 k の正則グラフ」と呼ぶ。
次数2までの正則グラフの分類は容易である。0-正則グラフは連結されていない頂点で構成され、1-正則グラフは連結されていない辺で構成され、2-正則グラフは連結されていない閉路で構成される。
3-正則グラフは立方体グラフとも呼ばれる。
正則グラフのうち、隣接する2つの頂点に共通する隣接点が常に同じ l 個で、隣接しない2つの頂点に共通する隣接点が常に同じ n 個となっているものを強正則グラフという。正則だが強正則でない最小のグラフは、6頂点の閉路グラフかつ循環グラフである。
代数的属性
正則グラフ
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/10/12 14:26 UTC 版)
「グラフ (離散数学)」の記事における「正則グラフ」の解説
詳細は「正則グラフ」を参照 「正則グラフ (regular graph)」は各頂点がいずれも同じ数の頂点と隣接しているグラフ。すなわち頂点の次数が全て等しいグラフ。次数が k の正則グラフを「k-正則グラフ」または「次数 k の正則グラフ」と呼ぶ。
※この「正則グラフ」の解説は、「グラフ (離散数学)」の解説の一部です。
「正則グラフ」を含む「グラフ (離散数学)」の記事については、「グラフ (離散数学)」の概要を参照ください。
正則グラフと同じ種類の言葉
- 正則グラフのページへのリンク