帰納の限界
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2019/12/03 01:24 UTC 版)
一般的にいって帰納は、あくまでも確率・確度といった蓋然性の導出に留まる。例えば、「ネコaはネズミを追いかける」「ネコbはネズミを追いかける」「ネコcはネズミを追いかける」という事例が幾つかあるので、「全てのネコはネズミを追いかける」と結論を下すとしよう。ここでは、自分が見たネコだけから「全てのネコ」という全称命題に範囲を飛躍させている。しかし、この先新たにネズミを追いかけない猫が発見される可能性は常にある。したがって、「全てのネコはネズミを追いかける」と定式化することには疑問が残る。 また、次のような例でも同様のことが言える。地上で太陽を観測し、三日かけて次の観測事実を得たとする。「一昨日も、昨日も、今日も、太陽は東の高い山の脇から上ってきた」。ここから次のように結論するのが枚挙的帰納法である。「太陽はいつも、東の高い山の脇から上る」。 演繹で用いられている例と帰納を対比させるとこうなる。「人であるソクラテスは死んだ。人であるプラトンは死んだ。人であるアリストテレスは死んだ。したがって人は全て死ぬ」。つまり、帰納は一般化に基づく。 一般的にいえば、帰納とは何かしらの知的判断能力を有する生物が行動学習をする際の根本的な原理を定式化したものである。フランシス・ベーコンの提出したこの帰納という概念をより人間学的に咀嚼したものが、ジョン・ロックの経験論である。 データから理論を導き出す試み、すなわち帰納的推理はベーコンらによって始められ、ジョン・スチュアート・ミルの『論理学体系』においてある程度体系化され、その後近代論理学や統計学と結びついて研究されている。
※この「帰納の限界」の解説は、「帰納」の解説の一部です。
「帰納の限界」を含む「帰納」の記事については、「帰納」の概要を参照ください。
- 帰納の限界のページへのリンク