動原体とは? わかりやすく解説

Weblio 辞書 > 同じ種類の言葉 > 言葉 > 場所 > > 動原体の意味・解説 

どうげん‐たい【動原体】

読み方:どうげんたい

分裂期染色体上に形成されるキネトコアのこと。→細胞分裂

[補説] セントロメア染色体くびれた部分)を動原体と呼ぶこともある。


動原体

英訳・(英)同義/類義語:centromere, Kinetochore complex

細胞分裂の際に染色体紡錘糸接着する部分

動原体

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/08/25 05:35 UTC 版)

動原体(どうげんたい)またはキネトコア: kinetochore[kɪˈnɛtəkɔːr][-ˈntəkɔːr])は、真核生物の細胞において、複製された染色分体に結合する円盤型のタンパク質構造であり、細胞分裂時に姉妹染色分体を引き離すために紡錘糸が結合する部位である[1]。キネトコアはセントロメア上で組み立てられ、有糸分裂減数分裂時に染色体紡錘体微小管ポリマーへ連結する。また、キネトコアのタンパク質は姉妹染色分体をつなぎとめておくのを助け、染色体の編集にも関与する[2]


  1. ^ Santaguida, Stefano; Musacchio, Andrea (2009-09-02). “The life and miracles of kinetochores”. The EMBO Journal 28 (17): 2511–2531. doi:10.1038/emboj.2009.173. ISSN 1460-2075. PMC 2722247. PMID 19629042. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2722247/. 
  2. ^ Brooker, Robert J. (2016). Concepts of Genetics. New York: McGraw Hill Education 
  3. ^ Albertson, D.G.; Thomson, J.N. (1993), “Segregation of holocentric chromosomes at meiosis in the nematode, Caenorhabditis elegans”, Chromosome Research 1 (1): 15–26, doi:10.1007/BF00710603, PMID 8143084 
  4. ^ Peter De Wulf, William C. Earnshaw, The Kinetochore: From Molecular Discoveries to Cancer Therapy
  5. ^ a b Maiato, H.; Deluca, J.; Salmon, E.D.; Earnshaw, W.C. (2004), “The dynamic kinetochore-microtubule interface”, Journal of Cell Science 117 (22): 5461–5477, doi:10.1242/jcs.01536, PMID 15509863 
  6. ^ Mitchison, T.; Kirschner, M. (1984), “Dynamic instability of microtubule growth”, Nature 312 (5991): 237–242, doi:10.1038/312237a0, PMID 6504138, オリジナルの2010-06-22時点におけるアーカイブ。, https://web.archive.org/web/20100622035849/http://www.rpgroup.caltech.edu/courses/aph161/Handouts/Mitchison1984.pdf 2010年8月23日閲覧。 
  7. ^ Mehta, G.D.; Agarwal, M.; Ghosh, S.K. (2014), “Functional characterization of kinetochore protein, Ctf19 in meiosis I: an implication of differential impact of Ctf19 on the assembly of mitotic and meiotic kinetochores in Saccharomyces cerevisiae”, Molecular Microbiology 91 (6): 1179–1199, doi:10.1111/mmi.12527, PMID 24446862 
  8. ^ Agarwal, Meenakshi; Mehta, Gunjan; Ghosh, Santanu K. (2015-03-01). “Role of Ctf3 and COMA subcomplexes in meiosis: Implication in maintaining Cse4 at the centromere and numeric spindle poles”. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1853 (3): 671–684. doi:10.1016/j.bbamcr.2014.12.032. ISSN 0167-4889. PMID 25562757. 
  9. ^ a b Brinkley, B.R.; Stubblefield, E. (1966), “The fine structure of the kinetochore of a mammalian cell in vitro”, Chromosoma 19 (1): 28–43, doi:10.1007/BF00332792, PMID 5912064 
  10. ^ Jokelainen, P.T. (1967), “The ultrastructure and spatial organization of the metaphase kinetochore in mitotic rat cells”, J Ultrastruct Res 19 (1): 19–44, doi:10.1016/S0022-5320(67)80058-3, PMID 5339062 
  11. ^ Rieder, C.L. (1982), “The formation, structure, and composition of the mammalian kinetochore and kinetochore fiber”, Int Rev Cytol, International Review of Cytology 79: 1–58, doi:10.1016/S0074-7696(08)61672-1, ISBN 978-0-12-364479-4, PMID 6185450 
  12. ^ McEwen, B.F.; Hsieh, C.E.; Mattheyses, A.L.; Rieder, C.L. (1998), “A new look at kinetochore structure in vertebrate somatic cells using high-pressure freezing and freeze substitution”, Chromosoma 107 (6): 366–375, doi:10.1007/s004120050320, PMC 2905855, PMID 9914368, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2905855 
  13. ^ Brenner, S.; Pepper, D.; Berns, M.W.; Tan, E.; Brinkley, B.R. (1981), “Kinetochore structure, duplication, and distribution in mammalian cells: analysis by human autoantibodies from scleroderma patients”, The Journal of Cell Biology 91 (1): 95–102, doi:10.1083/jcb.91.1.95, PMC 2111947, PMID 7298727, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2111947 
  14. ^ Pluta, A.F.; MacKay, A.M.; Ainsztein, A.M.; Goldberg, I.G.; Earnshaw, W.C. (1995), “The Centromere: Hub of Chromosomal Activities”, Science 270 (5242): 1591–4, doi:10.1126/science.270.5242.1591, PMID 7502067 
  15. ^ Palmer, D.K.; O'Day, K.; Trong, H.L.; Charbonneau, H.; Margolis, R.L. (1991), “Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone”, Proceedings of the National Academy of Sciences 88 (9): 3734–3738, doi:10.1073/pnas.88.9.3734, PMC 51527, PMID 2023923, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=51527 
  16. ^ Howman, E.V.; Fowler, K.J.; Newson, A.J.; Redward, S.; MacDonald, A.C.; Kalitsis, P.; Choo, K.H.A. (2000), “Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice”, Proceedings of the National Academy of Sciences 97 (3): 1148–1153, doi:10.1073/pnas.97.3.1148, PMC 15551, PMID 10655499, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=15551 
  17. ^ Oegema, K.; Desai, A.; Rybina, S.; Kirkham, M.; Hyman, A.A. (2001), “Functional Analysis of Kinetochore Assembly in Caenorhabditis elegans”, The Journal of Cell Biology 153 (6): 1209–1226, doi:10.1083/jcb.153.6.1209, PMC 2192036, PMID 11402065, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2192036 
  18. ^ Van Hooser, A.A.; Ouspenski, I.I.; Gregson, H.C.; Starr, D.A.; Yen, T.J.; Goldberg, M.L.; Yokomori, K.; Earnshaw, W.C. et al. (2001), “Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A”, Journal of Cell Science 114 (19): 3529–3542, PMID 11682612 
  19. ^ Fukagawa, T.; Mikami, Y.; Nishihashi, A.; Regnier, V.; Haraguchi, T.; Hiraoka, Y.; Sugata, N.; Todokoro, K. et al. (2001), “CENP-H, a constitutive centromere component, is required for centromere targeting of CENP-C in vertebrate cells”, The EMBO Journal 20 (16): 4603–4617, doi:10.1093/emboj/20.16.4603, PMC 125570, PMID 11500386, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=125570 
  20. ^ Goshima, G.; Kiyomitsu, T.; Yoda, K.; Yanagida, M. (2003), “Human centromere chromatin protein hMis12, essential for equal segregation, is independent of CENP-A loading pathway”, The Journal of Cell Biology 160 (1): 25–39, doi:10.1083/jcb.200210005, PMC 2172742, PMID 12515822, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2172742 
  21. ^ a b c d Wigge, Philip A.; Kilmartin, John V. (2001), “The Ndc80p Complex from Saccharomyces cerevisiae Contains Conserved Centromere Components and Has a Function in Chromosome Segregation”, The Journal of Cell Biology 152 (2): 349–360, doi:10.1083/jcb.152.2.349, PMC 2199619, PMID 11266451, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2199619 
  22. ^ a b c d Deluca, J.G.; Moree, B.; Hickey, J.M.; Kilmartin, J.V.; Salmon, E.D. (2002), “hNuf2 inhibition blocks stable kinetochore–microtubule attachment and induces mitotic cell death in HeLa cells”, The Journal of Cell Biology 159 (4): 549–555, doi:10.1083/jcb.200208159, PMC 2173110, PMID 12438418, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2173110 
  23. ^ a b Cheeseman, I.M.; Niessen, S.; Anderson, S.; Hyndman, F.; Yates, J.R.; Oegema, K.; Desai, A. (2004), “A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension”, Genes & Development 18 (18): 2255–2268, doi:10.1101/gad.1234104, PMC 517519, PMID 15371340, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=517519 
  24. ^ Rattner, J.B.; Rao, A.; Fritzler, M.J.; Valencia, D.W.; Yen, T.J. (1993), “CENP-F is a. Ca 400 kDa kinetochore protein that exhibits a cell-cycle dependent localization”, Cell Motil Cytoskeleton 26 (3): 214–26, doi:10.1002/cm.970260305, PMID 7904902 
  25. ^ Liao, H.; Winkfein, RJ; Mack, G; Rattner, JB; Yen, TJ (1995), “CENP-F is a protein of the nuclear matrix that assembles onto kinetochores at late G2 and is rapidly degraded after mitosis”, The Journal of Cell Biology 130 (3): 507–518, doi:10.1083/jcb.130.3.507, PMC 2120529, PMID 7542657, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2120529 
  26. ^ a b c d e Hoffman, DB; Hoffman, D.B.; Pearson, C.G.; Yen, T.J.; Howell, B.J.; Salmon, E.D. (2001), “Microtubule-dependent changes in assembly of microtubule motor proteins and mitotic spindle checkpoint proteins at PtK1 kinetochores”, Molecular Biology of the Cell 12 (7): 1995–2009, doi:10.1091/mbc.12.7.1995, PMC 55648, PMID 11451998, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=55648 
  27. ^ a b King, S.M. (2000), “The dynein microtubule motor”, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1496 (1): 60–75, doi:10.1016/S0167-4889(00)00009-4, PMID 10722877 
  28. ^ a b Howell, B.J.; Moree, B.; Farrar, E.M.; Stewart, S.; Fang, G.; Salmon, E.D. (2004), “Spindle Checkpoint Protein Dynamics at Kinetochores in Living Cells”, Current Biology 14 (11): 953–964, doi:10.1016/j.cub.2004.05.053, PMID 15182668 
  29. ^ a b c Shah, J.V.; Botvinick, E.; Bonday, Z.; Furnari, F.; Berns, M.; Cleveland, D.W. (2004), “Dynamics of Centromere and Kinetochore Proteins Implications for Checkpoint Signaling and Silencing”, Current Biology 14 (11): 942–952, doi:10.1016/j.cub.2004.05.046, PMID 15182667, https://cloudfront.escholarship.org/dist/prd/content/qt0wt394xv/qt0wt394xv.pdf 
  30. ^ Tirnauer, Jennifer S.; Canman, Julie C.; Salmon, E.D.; Mitchison, Timothy J. (2002), “EB1 Targets to Kinetochores with Attached, Polymerizing Microtubules”, Molecular Biology of the Cell 13 (12): 4308–4316, doi:10.1091/mbc.E02-04-0236, PMC 138635, PMID 12475954, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=138635 
  31. ^ Kaplan, K.B.; Burds, A.A.; Swedlow, J.R.; Bekir, S.S.; Sorger, P.K.; Näthke, I.S. (2001), “A role for the Adenomatous Polyposis Coli protein in chromosome segregation”, Nature Cell Biology 3 (4): 429–432, doi:10.1038/35070123, PMID 11283619 
  32. ^ Joseph, J.; Liu, S.T.; Jablonski, S.A.; Yen, T.J.; Dasso, M. (2004), “The RanGAP1-RanBP2 Complex is Essential for Microtubule-Kinetochore Interactions in Vivo”, Current Biology 14 (7): 611–617, doi:10.1016/j.cub.2004.03.031, PMID 15062103 
  33. ^ Salina, Davide; Enarson, Paul; Rattner, J.B.; Burke, Brian (2003), “Nup358 integrates nuclear envelope breakdown with kinetochore assembly”, The Journal of Cell Biology 162 (6): 991–1002, doi:10.1083/jcb.200304080, PMC 2172838, PMID 12963708, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2172838 
  34. ^ “The Protein Composition of Mitotic Chromosomes Determined Using Multiclassifier Combinatorial Proteomics”, Cell 142 (5): 810–21, (September 2010), doi:10.1016/j.cell.2010.07.047, PMC 2982257, PMID 20813266 
  35. ^ “Identification of novel mitosis regulators through data mining with human centromere/kinetochore proteins as group queries”, BMC Cell Biol 13: 15, (2012), doi:10.1186/1471-2121-13-15, PMC 3419070, PMID 22712476, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3419070 
  36. ^ McEwen, B.F.; Heagle, A.B.; Cassels, G.O.; Buttle, K.F.; Rieder, C.L. (1997), “Kinetochore Fiber Maturation in PtK1 Cells and Its Implications for the Mechanisms of Chromosome Congression and Anaphase Onset”, The Journal of Cell Biology 137 (7): 1567–1580, doi:10.1083/jcb.137.7.1567, PMC 2137823, PMID 9199171, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2137823 
  37. ^ a b Nicklas, R.B.; Kubai, D.F. (1985), “Microtubules, chromosome movement, and reorientation after chromosomes are detached from the spindle by micromanipulation”, Chromosoma 92 (4): 313–324, doi:10.1007/BF00329815, PMID 4042772 
  38. ^ Mayor, T.; Meraldi, P.; Stierhof, Y.D.; Nigg, E.A.; Fry, A.M. (1999), “Protein kinases in control of the centrosome cycle”, FEBS Letters 452 (1–2): 92–95, doi:10.1016/S0014-5793(99)00534-7, PMID 10376685 
  39. ^ a b Kirschner, M.; Mitchison, T. (1986), “Beyond self-assembly: from microtubules to morphogenesis”, Cell 45 (3): 329–342, doi:10.1016/0092-8674(86)90318-1, PMID 3516413 
  40. ^ Holy, T. E.; Leibler, S. (1994), “Dynamic instability of microtubules as an efficient way to search in space”, Proceedings of the National Academy of Sciences of the United States of America 91 (12): 5682–5685, doi:10.1073/pnas.91.12.5682, PMC 44060, PMID 8202548, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=44060 
  41. ^ Hayden, J.H.; Bowser, SS; Rieder, CL (1990), “Kinetochores capture astral microtubules during chromosome attachment to the mitotic spindle: direct visualization in live newt lung cells”, The Journal of Cell Biology 111 (3): 1039–1045, doi:10.1083/jcb.111.3.1039, PMC 2116290, PMID 2391359, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2116290 
  42. ^ Nicklas, R.B. (1997), “How Cells Get the Right Chromosomes”, Science 275 (5300): 632–7, doi:10.1126/science.275.5300.632, PMID 9005842 
  43. ^ Loncarek, J.; Kisurina-evgenieva, O.; Vinogradova, T.; Hergert, P.; La Terra, S.; Kapoor, T.M.; Khodjakov, A. (2007), “The centromere geometry essential for error-free mitosis is controlled by spindle forces”, Nature 450 (7170): 745–9, doi:10.1038/nature06344, PMC 2586812, PMID 18046416, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2586812 
  44. ^ Dewar, H.; Tanaka, K.; Nasmyth, K.; Tanaka, T.U. (2004), “Tension between two kinetochores suffices for their bi-orientation on the mitotic spindle”, Nature 428 (6978): 93–7, doi:10.1038/nature02328, PMID 14961024 
  45. ^ Echeverri, C.J.; Paschal, B.M.; Vaughan, K.T.; Vallee, R.B. (1996), “Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis”, The Journal of Cell Biology 132 (4): 617–633, doi:10.1083/jcb.132.4.617, PMC 2199864, PMID 8647893, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2199864 
  46. ^ Sharp, D.J.; Rogers, G.C.; Scholey, J.M. (2000), “Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos”, Nature Cell Biology 2 (12): 922–930, doi:10.1038/35046574, PMID 11146657 
  47. ^ Banks, J.D.; Heald, R. (2001), “Chromosome movement: Dynein-out at the kinetochore”, Current Biology 11 (4): 128–131, doi:10.1016/S0960-9822(01)00059-8, PMID 11250166 
  48. ^ Howell, B.J.; McEwen, B.F.; Canman, J.C.; Hoffman, D.B.; Farrar, E.M.; Rieder, C.L.; Salmon, E.D. (2001), “Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation”, The Journal of Cell Biology 155 (7): 1159–1172, doi:10.1083/jcb.200105093, PMC 2199338, PMID 11756470, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2199338 
  49. ^ Cooke, C.A.; Schaar, B.; Yen, T.J.; Earnshaw, W.C. (1997), “LLocalization of CENP-E in the fibrous corona and outer plate of mammalian kinetochores from prometaphase through anaphase”, Chromosoma 106 (7): 446–455, doi:10.1007/s004120050266, PMID 9391217 
  50. ^ Weaver, Beth A.A.; Bonday, Zahid Q.; Putkey, Frances R.; Kops, Geert J.P.L.; Silk, Alain D.; Cleveland, Don W. (2003), “Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss”, The Journal of Cell Biology 162 (4): 551–563, doi:10.1083/jcb.200303167, PMC 2173788, PMID 12925705, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2173788 
  51. ^ a b Maiato, H.; Rieder, C.L.; Khodjakov, A. (2004), “Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis”, The Journal of Cell Biology 167 (5): 831–840, doi:10.1083/jcb.200407090, PMC 2172442, PMID 15569709, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2172442 
  52. ^ Mitchison, T.J. (1988), “Microtubule Dynamics and Kinetochore Function in Mitosis”, Annual Review of Cell Biology 4 (1): 527–545, doi:10.1146/annurev.cb.04.110188.002523, PMID 3058165 
  53. ^ a b c He, X.; Rines, D.R.; Espelin, C.W.; Sorger, P.K. (2001), “Molecular Analysis of Kinetochore-Microtubule Attachment in Budding Yeast”, Cell 106 (2): 195–206, doi:10.1016/S0092-8674(01)00438-X, PMID 11511347 
  54. ^ a b Westermann, Stefan; Cheeseman, Iain M.; Anderson, Scott; Yates, John R.; I. I. I., DG; Drubin, David G.; Barnes, Georjana (2003), “Architecture of the budding yeast kinetochore reveals a conserved molecular core”, The Journal of Cell Biology 163 (2): 215–22, doi:10.1083/jcb.200305100, PMC 2173538, PMID 14581449, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2173538 
  55. ^ a b De Wulf, P.; McAinsh, A.D.; Sorger, P.K. (2003), “Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes”, Genes & Development 17 (23): 2902–2921, doi:10.1101/gad.1144403, PMC 289150, PMID 14633972, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=289150 
  56. ^ Goh, P.Y.; Kilmartin, J.V. (1993), “NDC10: a gene involved in chromosome segregation in Saccharomyces cerevisiae”, The Journal of Cell Biology 121 (3): 503–12, doi:10.1083/jcb.121.3.503, PMC 2119568, PMID 8486732, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2119568 
  57. ^ Nabetani, A.; Koujin, T.; Tsutsumi, C.; Haraguchi, T.; Hiraoka, Y. (2001), “A conserved protein, Nuf2, is implicated in connecting the centromere to the spindle during chromosome segregation: a link between the kinetochore function and the spindle checkpoint”, Chromosoma 110 (5): 322–334, doi:10.1007/s004120100153, PMID 11685532 
  58. ^ a b Howe, Mary; McDonald, Kent L.; Albertson, Donna G.; Meyer, Barbara J. (2001), “Him-10 Is Required for Kinetochore Structure and Function on Caenorhabditis elegans Holocentric Chromosomes”, The Journal of Cell Biology 153 (6): 1227–1238, doi:10.1083/jcb.153.6.1227, PMC 2192032, PMID 11402066, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2192032 
  59. ^ a b c Martin-lluesma, Silvia; Stucke, Volker M.; Nigg, Erich A. (2002), “Role of Hec1 in Spindle Checkpoint Signaling and Kinetochore Recruitment of Mad1/Mad2”, Science 297 (5590): 2267–2270, doi:10.1126/science.1075596, PMID 12351790 
  60. ^ a b c McCleland, M.L.; Gardner, R.D.; Kallio, M.J.; Daum, J.R.; Gorbsky, G.J.; Burke, D.J.; Stukenberg, P.T. (2003), “The highly conserved Ndc80 complex is required for kinetochore assembly, chromosome congression, and spindle checkpoint activity”, Genes & Development 17 (1): 101–114, doi:10.1101/gad.1040903, PMC 195965, PMID 12514103, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=195965 
  61. ^ Zheng, L.; Chen, Y.; Lee, W.H. (1999), “Hec1p, an Evolutionarily Conserved Coiled-Coil Protein, Modulates Chromosome Segregation through Interaction with SMC Proteins”, Molecular and Cellular Biology 19 (8): 5417–5428, doi:10.1128/mcb.19.8.5417, PMC 84384, PMID 10409732, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=84384 
  62. ^ Wei, Ronnie R.; Al-bassam, Jawdat; Harrison, Stephen C. (2007), “The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment”, Nature Structural & Molecular Biology 14 (1): 54–59, doi:10.1038/nsmb1186, PMID 17195848 
  63. ^ Courtwright, A.M.; He, X. (2002), “Dam1 is the Right One Phosphoregulation of Kinetochore Biorientation”, Developmental Cell 3 (5): 610–611, doi:10.1016/S1534-5807(02)00332-5, PMID 12431367 
  64. ^ a b Cimini, D.; Moree, B.; Canman, J.C.; Salmon, E.D. (2003), “Merotelic kinetochore orientation occurs frequently during early mitosis in mammalian tissue cells and error correction is achieved by two different mechanisms”, Journal of Cell Science 116 (20): 4213–4225, doi:10.1242/jcs.00716, PMID 12953065 
  65. ^ Adams, R.R.; Carmena, M.; Earnshaw, W.C. (2001), “Chromosomal passengers and the (aurora) ABCs of mitosis”, Trends in Cell Biology 11 (2): 49–54, doi:10.1016/S0962-8924(00)01880-8, PMID 11166196 
  66. ^ Cheeseman, I.M.; Anderson, S.; Jwa, M.; Green, E.M.; Kang, J.; Yates, J.R.; Chan, C.S.M.; Drubin, D.G. et al. (2002), “Phospho-Regulation of Kinetochore-Microtubule Attachments by the Aurora Kinase Ipl1p”, Cell 111 (2): 163–172, doi:10.1016/S0092-8674(02)00973-X, PMID 12408861 
  67. ^ Gautschi, Oliver; Heighway, Jim; Mack, Philip C.; Purnell, Phillip R.; Lara, Primo N.; Jr, .; Gandara, David R. (2008), “Aurora Kinases as Anticancer Drug Targets”, Clinical Cancer Research 14 (6): 1639–48, doi:10.1158/1078-0432.CCR-07-2179, PMID 18347165 
  68. ^ Meraldi, Patrick; Draviam, Viji M.; Sorger, Peter K. (2004-07). “Timing and checkpoints in the regulation of mitotic progression”. Developmental Cell 7 (1): 45–60. doi:10.1016/j.devcel.2004.06.006. ISSN 1534-5807. PMID 15239953. https://pubmed.ncbi.nlm.nih.gov/15239953. 
  69. ^ Tang, T.T.L.; Bickel, S.E.; Young, L.M.; Orr-weaver, T.L. (1998), “Maintenance of sister-chromatid cohesion at the centromere by the Drosophila MEI-S332 protein”, Genes & Development 12 (24): 3843–3856, doi:10.1101/gad.12.24.3843, PMC 317262, PMID 9869638, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=317262 
  70. ^ McGuinness, B.E.; Hirota, T.; Kudo, N.R.; Peters, J.M.; Nasmyth, K. (2005), “Shugoshin Prevents Dissociation of Cohesin from Centromeres During Mitosis in Vertebrate Cells”, PLOS Biol 3 (3): e86, doi:10.1371/journal.pbio.0030086, PMC 1054882, PMID 15737064, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1054882 
  71. ^ Joseph, Jomon; Tan, Shyh-Han; Karpova, Tatiana S.; McNally, James G.; Dasso, Mary (2002), “SUMO-1 targets RanGAP1 to kinetochores and mitotic spindles”, The Journal of Cell Biology 156 (4): 595–602, doi:10.1083/jcb.200110109, PMC 2174074, PMID 11854305, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2174074 
  72. ^ Arnaoutov, A.; Dasso, M. (2003), “The Ran GTPase Regulates Kinetochore Function”, Developmental Cell 5 (1): 99–111, doi:10.1016/S1534-5807(03)00194-1, PMID 12852855 
  73. ^ Prasanth, S.G.; Prasanth, K.V.; Siddiqui, K.; Spector, D.L.; Stillman, B. (2004), “Human Orc2 localizes to centrosomes, centromeres and heterochromatin during chromosome inheritance”, The EMBO Journal 23 (13): 2651–2663, doi:10.1038/sj.emboj.7600255, PMC 449767, PMID 15215892, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=449767 
  74. ^ Shimada, K.; Gasser, S.M. (2007), “The Origin Recognition Complex Functions in Sister-Chromatid Cohesion in Saccharomyces cerevisiae”, Cell 128 (1): 85–99, doi:10.1016/j.cell.2006.11.045, PMID 17218257 
  75. ^ Kato, H; Matsunaga, F; Miyazaki, S; Yin, L; D'urso, G; Tanaka, K; Murakami, Y (2008), “Schizosaccharomyces pombe Orc5 plays multiple roles in the maintenance of genome stability throughout the cell cycle”, Cell Cycle 7 (8): 1085–96, doi:10.4161/cc.7.8.5710, PMID 18414064 
  76. ^ Skibbens, R.V.; Skeen, V.P.; Salmon, E.D. (1993), “Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism”, The Journal of Cell Biology 122 (4): 859–875, doi:10.1083/jcb.122.4.859, PMC 2119582, PMID 8349735, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2119582 
  77. ^ Rieder, C.L.; Salmon, E.D. (1994), “Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle”, The Journal of Cell Biology 124 (3): 223–33, doi:10.1083/jcb.124.3.223, PMC 2119939, PMID 8294508, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2119939 
  78. ^ Skibbens, RV; Rieder, CL; Salmon, ED (1995), “Kinetochore motility after severing between sister centromeres using laser microsurgery: evidence that kinetochore directional instability and position is regulated by tension”, Journal of Cell Science 108 (7): 2537–48, PMID 7593295 
  79. ^ Askham, J. M.; Vaughan, K. T.; Goodson, H. V.; Morrison, E. E. (2002), “Evidence That an Interaction between EB1 and p150Glued Is Required for the Formation and Maintenance of a Radial Microtubule Array Anchored at the Centrosome”, Molecular Biology of the Cell 13 (10): 3627–3645, doi:10.1091/mbc.E02-01-0061, PMC 129971, PMID 12388762, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=129971 
  80. ^ Schuyler, S.C.; Pellman, D. (2001), “Microtubule "Plus-End-Tracking Proteins" the End is Just the Beginning”, Cell 105 (4): 421–424, doi:10.1016/S0092-8674(01)00364-6, PMID 11371339 
  81. ^ Howard, J.; Hyman, A.A. (2003), “Dynamics and mechanics of the microtubule plus end: cytoskeleton”, Nature 422 (6933): 753–758, doi:10.1038/nature01600, PMID 12700769 
  82. ^ Green, R.A.; Wollman, R.; Kaplan, K.B. (2005), “APC and EB1 Function Together in Mitosis to Regulate Spindle Dynamics and Chromosome Alignment”, Molecular Biology of the Cell 16 (10): 4609–4622, doi:10.1091/mbc.E05-03-0259, PMC 1237068, PMID 16030254, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1237068 
  83. ^ Dujardin, D.; Wacker, U.I.; Moreau, A.; Schroer, T.A.; Rickard, J.E.; De Mey, J.R. (1998), “Evidence for a Role of CLIP-170 in the Establishment of Metaphase Chromosome Alignment”, The Journal of Cell Biology 141 (4): 849–862, doi:10.1083/jcb.141.4.849, PMC 2132766, PMID 9585405, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2132766 
  84. ^ Maiato, H.; Khodjakov, A.; Rieder, C.L. (2004), “Drosophila CLASP is required for the incorporation of microtubule subunits into fluxing kinetochore fibres”, Nature Cell Biology 7 (1): 42–47, doi:10.1038/ncb1207, PMC 2596653, PMID 15592460, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2596653 
  85. ^ Maiato, H.; Fairley, E.A.L.; Rieder, C.L.; Swedlow, J.R.; Sunkel, C.E.; Earnshaw, W.C. (2003), “Human CLASP1 is an Outer Kinetochore Component that Regulates Spindle Microtubule Dynamics”, Cell 113 (7): 891–904, doi:10.1016/S0092-8674(03)00465-3, hdl:10216/53832, PMID 12837247 


「動原体」の続きの解説一覧

動原体

出典:『Wiktionary』 (2021/08/14 08:46 UTC 版)

名詞

どうげんたい

  1. キネトコアに同じ。英語 kinetochore翻訳
  2. セントロメアに同じ。英語 centromere翻訳

「動原体」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。



動原体と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「動原体」の関連用語

動原体のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



動原体のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
デジタル大辞泉デジタル大辞泉
(C)Shogakukan Inc.
株式会社 小学館
JabionJabion
Copyright (C) 2024 NII,NIG,TUS. All Rights Reserved.
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの動原体 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
Text is available under Creative Commons Attribution-ShareAlike (CC-BY-SA) and/or GNU Free Documentation License (GFDL).
Weblioに掲載されている「Wiktionary日本語版(日本語カテゴリ)」の記事は、Wiktionaryの動原体 (改訂履歴)の記事を複製、再配布したものにあたり、Creative Commons Attribution-ShareAlike (CC-BY-SA)もしくはGNU Free Documentation Licenseというライセンスの下で提供されています。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2024 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2024 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2024 GRAS Group, Inc.RSS