Rosetta@home 疾患関連研究

Rosetta@home

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/04/07 08:26 UTC 版)

疾患関連研究

タンパク質の構造予測、ドッキング、デザインなどの基礎研究に加えて、Rosetta@homeは疾病関連の研究にも利用されている[39]。David Baker氏のRosetta@homeジャーナルには、多数のマイナー研究プロジェクトが掲載されている[40]。2014年2月現在、フォーラムでは、最近の出版物の情報や簡単な説明が更新されている[41]。2016年以降、フォーラムのスレッドは使用されなくなり、研究に関するニュースはプロジェクトの一般的なニュースセクションで見つけることができる[42]

アルツハイマー病

Rosetta ソフトウェアスイートのコンポーネントである RosettaDesign を使用して、アミロイド原性タンパク質のどの領域がアミロイドフィブリル (英語版を形成する可能性が高いかを正確に予測した[43]。興味のあるタンパク質のヘキサペプチド(6アミノ酸長のフラグメント)を取り出し、既知のフィブリルを形成するヘキサペプチドと類似した構造に最も低いエネルギーで一致するものを選択することで、RosettaDesignは、ランダムなタンパク質の2倍の確率でフィブリルを形成するペプチドを特定することができた[44]。Rosetta@homeは、アルツハイマー病の原因とされるフィブリル形成タンパク質であるアミロイドβの構造予測にも使用された[45]。ロゼッタが設計したタンパク質については、フィブリルの形成を防ぐ可能性のある予備的な結果が得られているが、アルツハイマー病を予防できるかどうかは不明である[46]

炭疽菌

Rosettaのもう一つのコンポーネントであるRosettaDock[47][48][49]は、炭疽菌毒素 (英語版を構成する3つのタンパク質 (致死因子(LF)、浮腫因子(EF)、保護抗原(PA))間の相互作用をモデル化するために、実験的手法と組み合わせて使用された。 このコンピュータモデルは、LFとPAのドッキングを正確に予測し、それぞれのタンパク質のどのドメインがLFとPAの複合体に関与しているかを明らかにした。この洞察は最終的に炭疽菌ワクチンの改良につながる研究に利用された[50][51]

単純ヘルペスウイルス1型

RosettaDockは、抗体 (免疫グロブリンG)と、抗ウイルス抗体を分解する役割を果たす単純ヘルペスウイルス1型 (HSV-1) が発現する表面タンパク質との間のドッキングのモデル化に使用された。 RosettaDockによって予測されたタンパク質複合体は、特に入手が困難な実験モデルと密接に一致しており、研究者らは、このドッキング法が、X線結晶学がタンパク質-タンパク質界面のモデル化で抱えている問題のいくつかを解決する可能性があると結論づけた[52]

HIV

ビル&メリンダ・ゲイツ財団による19.4百万ドルの助成金[53]を受けた研究の一環として、Rosetta@homeは、ヒト免疫不全ウイルス(HIV)のための複数の可能性のあるワクチンの設計に使用されている[54][55]

マラリア

「グローバルヘルスにおけるグランドチャレンジ」 (英語版イニシアティブ[56]の研究では、Rosetta を使用して、ガンビエ・ハマダラ蚊 (Anopheles gambiae) を根絶したり、蚊がマラリアを感染させないようにすることができる、新しいホーミングエンドヌクレアーゼタンパク質を計算機的に設計している[57]。ホーミングエンドヌクレアーゼのように、タンパク質とDNAの相互作用を具体的にモデル化して変化させることができるため、Rosettaのような計算科学的タンパク質設計法は、遺伝子治療(がん治療の可能性を含む)において重要な役割を果たすことになる[58][59]

COVID-19

Rosetta分子モデリングスイートは最近、SARS-CoV-2スパイクタンパク質の原子スケールの構造を、実験室で測定する数週間前に正確に予測するために使用された[60]。2020年6月26日、同プロジェクトは、実験室でSARS-CoV-2ウイルスを中和する抗ウイルスタンパク質の作成に成功し、これらの実験的な抗ウイルス薬が動物実験の試験に向けて最適化されていることを発表した[61]

その後、10種類のSARS-CoV-2ミニタンパク質阻害剤を説明する論文が9月9日、Science誌に掲載された。これらの阻害剤のうち2つ、LCB1とLCB3は、SARS-CoV-2に対して開発されている最高のモノクローナル抗体よりも、モル比、質量ともに数倍以上の効力があるという。さらにこの研究では、これらの阻害剤は高温下でも活性を保持し、抗体よりも20倍小さく、したがって潜在的な中和活性部位を20倍多く有し、局所投与での薬効を高めることを示唆している。本阻害剤のサイズが小さく、安定性が高いことから、経鼻的に塗布するゲル製剤や、または呼吸器系に直接投与する粉末として適切なものになると期待されている。研究チームは、今後、これらの阻害剤を治療薬や予防薬として開発することを目指している[62]。2021年7月現在、これらの抗ウイルス剤候補は2022年初頭に臨床試験を開始すると予測されており、前臨床試験および初期臨床試験のためにビル&メリンダ・ゲイツ財団から資金提供を受けていた[10]。動物実験では、これらの抗ウイルス剤候補は、アルファ、ベータ、ガンマなどの懸念される変異種に有効であった[10][63][64]

Rosetta@homeは、計算によって設計された200万個以上のSARS-CoV-2 スパイク結合タンパク質のスクリーニングに使用され、この研究に貢献した[65][66]

がん

Rosetta@homeの研究者は、受容体のαサブユニットと相互作用しない、Neoleukin-2/15 (ネオロイキン-2/15) と呼ばれるIL-2受容体英語版アゴニストを設計した。このような免疫シグナル分子は、がん治療に有用である。天然のIL-2はαサブユニットとの相互作用による毒性に悩まされるが、少なくとも動物モデルでは、設計されたタンパク質の方がはるかに安全である[67]。Rosetta@homeは、設計の検証に役立った「フォワードフォールディング実験」に貢献した[68]

2020年9月のNew Yorker紙の特集で、David Baker氏は、Neoleukin-2/15のヒトによる臨床試験を「今年後半」に開始すると述べている。Neoleukin-2/15は、Baker研究室からのスピンオフ企業であるNeoleukinによって開発されている[69]。2020年12月、Neoleukinは、Neoleukin-2/15 (指定: NL-201) の第1相臨床試験の開始に向けて、アメリカ食品医薬品局(FDA)治験薬申請を行うと発表した。オーストラリアでも同様の申請を行っており、ネオロイキンは第1相臨床試験に120名の参加者を登録したいとしている[70]


  1. ^ Rosetta@home”. 2022年3月14日閲覧。
  2. ^ What is Rosetta@home?”. Rosetta@home forums. University of Washington. 2008年9月13日時点のオリジナルよりアーカイブ。2008年9月7日閲覧。
  3. ^ Callaway E (July 2022). “The entire protein universe: AI predicts shape of nearly every known protein”. Nature 608: 15-16. doi:10.1038/d41586-022-02083-2. 
  4. ^ Help in the fight against COVID-19!”. Rosetta@home. 2020年4月13日閲覧。
  5. ^ Lensink MF, Méndez R, Wodak SJ (December 2007). “Docking and scoring protein complexes: CAPRI 3rd Edition”. Proteins 69 (4): 704–18. doi:10.1002/prot.21804. PMID 17918726. 
  6. ^ Rosetta@home Rallies a Legion of Computers Against the Coronavirus”. HPCWire (2020年3月24日). 2020年3月25日閲覧。
  7. ^ a b Rosetta@home (2021年6月25日). “The COVID-19 projects on our platform are headed into human clinical trials! Our amazing online volunteers have played a role in the development of a promising new vaccine as well as candidate antiviral treatments.” (英語). Twitter. 2021年6月26日時点のオリジナルよりアーカイブ。2021年6月26日閲覧。
  8. ^ Cao L, Goreshnik I, Coventry B, Case JB, Miller L, Kozodoy L, Chen RE, Carter L, Walls AC, Park YJ, Strauch EM, Stewart L, Diamond MS, Veesler D, Baker D (October 2020). “De novo design of picomolar SARS-CoV-2 miniprotein inhibitors”. Science 370 (6515): 426–431. Bibcode2020Sci...370..426C. doi:10.1126/science.abd9909. PMC 7857403. PMID 32907861. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7857403/. 
  9. ^ Coronavirus update from David Baker. Thank you all for your contributions!”. Rosetta@home. Rosetta@home (2020年9月21日). 2020年10月30日時点のオリジナルよりアーカイブ。2020年9月23日閲覧。
  10. ^ a b c IPD Annual Report 2021”. Institute for Protein Design (2021年7月14日). 2021年8月18日時点のオリジナルよりアーカイブ。2021年8月18日閲覧。
  11. ^ ANZCTR - Registration”. anzctr.org.au. 2021年10月30日時点のオリジナルよりアーカイブ。2021年7月9日閲覧。
  12. ^ S. Korea approves Phase III trial of SK Bioscience's COVID-19 vaccine” (英語). Reuters (2021年8月10日). 2021年8月18日時点のオリジナルよりアーカイブ。2021年8月18日閲覧。
  13. ^ Institute of Protein Design (2021年8月10日). “Archived copy” (英語). Twitter. 2021年8月18日時点のオリジナルよりアーカイブ。2021年8月18日閲覧。
  14. ^ Silva DA, Yu S, Ulge UY, Spangler JB, Jude KM, Labão-Almeida C, Ali LR, Quijano-Rubio A, Ruterbusch M, Leung I, Biary T, Crowley SJ, Marcos E, Walkey CD, Weitzner BD, Pardo-Avila F, Castellanos J, Carter L, Stewart L, Riddell SR, Pepper M, Bernardes GJ, Dougan M, Garcia KC, Baker D (January 2019). “De novo design of potent and selective mimics of IL-2 and IL-15.”. Nature 565 (7738): 186–191. Bibcode2019Natur.565..186S. doi:10.1038/s41586-018-0830-7. PMC 6521699. PMID 30626941. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6521699/. 
  15. ^ Neoleukin Therapeutics Announces Initiation of Phase 1 NL-201 Trial | Neoleukin Therapeutics, Inc.” (英語). investor.neoleukin.com. 2021年6月24日時点のオリジナルよりアーカイブ。2021年6月22日閲覧。
  16. ^ Another publication in Nature describing the first de novo designed proteins with anti-cancer activity”. Rosetta@home (2020年1月14日). 2020年10月19日時点のオリジナルよりアーカイブ。2020年9月19日閲覧。
  17. ^ Download BOINC client software”. BOINC. University of California (2008年). 2008年12月1日閲覧。
  18. ^ Rosetta@home: Recommended System Requirements”. Rosetta@home. University of Washington (2008年). 2008年9月25日時点のオリジナルよりアーカイブ。2008年10月7日閲覧。
  19. ^ Rosetta@home: News archive”. Rosetta@home. University of Washington (2016年). 2016年7月20日閲覧。
  20. ^ Download BOINC client software”. BOINC. University of California (2008年). 2008年12月1日閲覧。
  21. ^ Rosetta@home: FAQ (work in progress) (message 10910)”. Rosetta@home forums. University of Washington (2006年). 2008年10月7日閲覧。
  22. ^ Kim DE (2005年). “Rosetta@home: Random Seed (message 3155)”. Rosetta@home forums. University of Washington. 2008年10月7日閲覧。
  23. ^ Rosetta@home: Quick guide to Rosetta and its graphics”. Rosetta@home. University of Washington (2007年). 2008年9月24日時点のオリジナルよりアーカイブ。2008年10月7日閲覧。
  24. ^ Rosetta@home: News archive”. Rosetta@home. University of Washington (2016年). 2016年7月20日閲覧。
  25. ^ Kim DE (2008年). “Rosetta@home: Problems with minirosetta version 1.+ (Message 51199)”. Rosetta@home forums. University of Washington. 2008年9月7日閲覧。
  26. ^ Rosetta Commons”. RosettaCommons.org (2008年). 2008年9月15日時点のオリジナルよりアーカイブ。2008年10月7日閲覧。
  27. ^ Yearly Growth of Protein Structures”. RCSB Protein Data Bank (2008年). 2008年11月30日閲覧。
  28. ^ Baker D (2008年). “Rosetta@home: David Baker's Rosetta@home journal (message 55893)”. Rosetta@home forums. University of Washington. 2008年10月7日閲覧。
  29. ^ Rosetta@home: Research Overview”. Rosetta@home. University of Washington (2007年). 2008年9月25日時点のオリジナルよりアーカイブ。2008年10月7日閲覧。
  30. ^ Kopp J, Bordoli L, Battey JN, Kiefer F, Schwede T (2007). “Assessment of CASP7 predictions for template-based modeling targets”. Proteins 69 Suppl 8: 38–56. doi:10.1002/prot.21753. PMID 17894352. 
  31. ^ Read RJ, Chavali G (2007). “Assessment of CASP7 predictions in the high accuracy template-based modeling category”. Proteins 69 Suppl 8: 27–37. doi:10.1002/prot.21662. PMID 17894351. 
  32. ^ Jauch R, Yeo HC, Kolatkar PR, Clarke ND (2007). “Assessment of CASP7 structure predictions for template free targets”. Proteins 69 Suppl 8: 57–67. doi:10.1002/prot.21771. PMID 17894330. 
  33. ^ Das R, Qian B, Raman S, etal (2007). “Structure prediction for CASP7 targets using extensive all-atom refinement with Rosetta@home”. Proteins 69 Suppl 8: 118–28. doi:10.1002/prot.21636. PMID 17894356. 
  34. ^ Wang C, Schueler-Furman O, Andre I, etal (December 2007). “RosettaDock in CAPRI rounds 6–12”. Proteins 69 (4): 758–63. doi:10.1002/prot.21684. PMID 17671979. 
  35. ^ Jiang L, Althoff EA, Clemente FR, etal (March 2008). “De novo computational design of retro-aldol enzymes”. Science 319 (5868): 1387–91. Bibcode2008Sci...319.1387J. doi:10.1126/science.1152692. PMC 3431203. PMID 18323453. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431203/. 
  36. ^ Hayden EC (February 13, 2008). “Protein prize up for grabs after retraction”. Nature. doi:10.1038/news.2008.569. 
  37. ^ Jiang L, Althoff EA, Clemente FR, etal (March 2008). “De novo computational design of retro-aldol enzymes”. Science 319 (5868): 1387–91. Bibcode2008Sci...319.1387J. doi:10.1126/science.1152692. PMC 3431203. PMID 18323453. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431203/. 
  38. ^ Jiang L, Althoff EA, Clemente FR, etal (March 2008). “De novo computational design of retro-aldol enzymes”. Science 319 (5868): 1387–91. Bibcode2008Sci...319.1387J. doi:10.1126/science.1152692. PMC 3431203. PMID 18323453. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431203/. 
  39. ^ Disease Related Research”. Rosetta@home. University of Washington (2008年). 2008年9月23日時点のオリジナルよりアーカイブ。2008年10月8日閲覧。
  40. ^ Baker D (2008年). “Rosetta@home: David Baker's Rosetta@home journal”. Rosetta@home forums. University of Washington. 2008年9月7日閲覧。
  41. ^ Rosetta@home Research Updates”. Boinc.bakerlab.org. 2014年4月18日閲覧。
  42. ^ News archive”. Rosetta@home. 2019年5月10日閲覧。
  43. ^ Kuhlman B, Baker D (September 2000). “Native protein sequences are close to optimal for their structures”. Proceedings of the National Academy of Sciences of the United States of America 97 (19): 10383–88. Bibcode2000PNAS...9710383K. doi:10.1073/pnas.97.19.10383. PMC 27033. PMID 10984534. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC27033/. 
  44. ^ Thompson MJ, Sievers SA, Karanicolas J, Ivanova MI, Baker D, Eisenberg D (March 2006). “The 3D profile method for identifying fibril-forming segments of proteins”. Proceedings of the National Academy of Sciences of the United States of America 103 (11): 4074–78. Bibcode2006PNAS..103.4074T. doi:10.1073/pnas.0511295103. PMC 1449648. PMID 16537487. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1449648/. 
  45. ^ Bradley P. “Rosetta@home forum: Amyloid fibril structure prediction”. Rosetta@home forums. University of Washington. 2008年9月7日閲覧。
  46. ^ Baker D. “Rosetta@home forum: Publications on R@H's Alzheimer's work? (message 54681)”. Rosetta@home forums. University of Washington. 2008年10月8日閲覧。
  47. ^ Wang C, Schueler-Furman O, Baker D (May 2005). “Improved side-chain modeling for protein–protein docking”. Protein Science 14 (5): 1328–39. doi:10.1110/ps.041222905. PMC 2253276. PMID 15802647. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2253276/. 
  48. ^ Gray JJ, Moughon S, Wang C, etal (August 2003). “Protein–protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations”. Journal of Molecular Biology 331 (1): 281–99. doi:10.1016/S0022-2836(03)00670-3. PMID 12875852. 
  49. ^ Schueler-Furman O, Wang C, Baker D (August 2005). “Progress in protein–protein docking: atomic resolution predictions in the CAPRI experiment using RosettaDock with an improved treatment of side-chain flexibility”. Proteins 60 (2): 187–94. doi:10.1002/prot.20556. PMID 15981249. 
  50. ^ Lacy DB, Lin HC, Melnyk RA, etal (November 2005). “A model of anthrax toxin lethal factor bound to protective antigen”. Proceedings of the National Academy of Sciences of the United States of America 102 (45): 16409–14. Bibcode2005PNAS..10216409L. doi:10.1073/pnas.0508259102. PMC 1283467. PMID 16251269. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1283467/. 
  51. ^ Albrecht MT, Li H, Williamson ED, etal (November 2007). “Human monoclonal antibodies against anthrax lethal factor and protective antigen act independently to protect against Bacillus anthracis infection and enhance endogenous immunity to anthrax”. Infection and Immunity 75 (11): 5425–33. doi:10.1128/IAI.00261-07. PMC 2168292. PMID 17646360. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2168292/. 
  52. ^ Sprague ER, Wang C, Baker D, Bjorkman PJ (June 2006). “Crystal structure of the HSV-1 Fc receptor bound to Fc reveals a mechanism for antibody bipolar bridging”. PLOS Biology 4 (6): e148. doi:10.1371/journal.pbio.0040148. PMC 1450327. PMID 16646632. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1450327/. 
  53. ^ Paulson, Tom (2006年7月19日). “Gates Foundation awards $287 million for HIV vaccine research”. Seattle Post-Intelligencer. http://www.seattlepi.com/local/278100_aidsvaccine19ww.html 2008年9月7日閲覧。 
  54. ^ Liu Y, etal (2007年). “Development of IgG1 b12 scaffolds and HIV-1 env-based outer domain immunogens capable of eliciting and detecting IgG1 b12-like antibodies”. Global HIV Vaccine Enterprise. 2009年2月25日時点のオリジナルよりアーカイブ。2008年9月28日閲覧。
  55. ^ Baker D. “David Baker's Rosetta@home journal archives (message 40756)”. Rosetta@home forums. University of Washington. 2008年9月7日閲覧。
  56. ^ Homing Endonuclease Genes: New Tools for Mosquito Population Engineering and Control”. Grand Challenges in Global Health. 2008年9月7日閲覧。
  57. ^ Windbichler N, Papathanos PA, Catteruccia F, Ranson H, Burt A, Crisanti A (2007). “Homing endonuclease mediated gene targeting in Anopheles gambiae cells and embryos”. Nucleic Acids Research 35 (17): 5922–33. doi:10.1093/nar/gkm632. PMC 2034484. PMID 17726053. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2034484/. 
  58. ^ Disease Related Research”. Rosetta@home. University of Washington (2008年). 2008年9月23日時点のオリジナルよりアーカイブ。2008年10月8日閲覧。
  59. ^ Ashworth J, Havranek JJ, Duarte CM, etal (June 2006). “Computational redesign of endonuclease DNA binding and cleavage specificity”. Nature 441 (7093): 656–59. Bibcode2006Natur.441..656A. doi:10.1038/nature04818. PMC 2999987. PMID 16738662. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2999987/. 
  60. ^ Rosetta's role in fighting coronavirus – Institute for Protein Design” (英語). 2020年3月6日閲覧。
  61. ^ Coronavirus Research Update”. Rosetta@home Official Twitter. Rosetta@Home (2020年6月26日). 2020年6月27日閲覧。
  62. ^ Cao, Longxing (2020-09-09). “De novo design of picomolar SARS-CoV-2 miniprotein inhibitors”. Science: eabd9909. doi:10.1126/science.abd9909. PMID 32907861. https://science.sciencemag.org/content/early/2020/09/08/science.abd9909. 
  63. ^ Case JB, Chen RE, Cao L, Ying B, Winkler ES, Johnson M, Goreshnik I, Pham MN, Shrihari S, Kafai NM, Bailey AL, Xie X, Shi PY, Ravichandran R, Carter L, Stewart L, Baker D, Diamond MS (July 2021). “Ultrapotent miniproteins targeting the SARS-CoV-2 receptor-binding domain protect against infection and disease” (English). Cell Host & Microbe 29 (7): 1151–1161.e5. doi:10.1016/j.chom.2021.06.008. PMC 8221914. PMID 34192518. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8221914/. 
  64. ^ Hunt AC, Case JB, Park YJ, Cao L, Wu K, Walls AC, Liu Z, Bowen JE, Yeh HW, Saini S, Helms L, Zhao YT, Hsiang TY, Starr TN, Goreshnik I, Kozodoy L, Carter L, Ravichandran R, Green LB, Matochko WL, Thomson CA, Vögeli B, Krüger-Gericke A, VanBlargan LA, Chen RE, Ying B, Bailey AL, Kafai NM, Boyken S, Ljubetič A, Edman N, Ueda G, Chow C, Addetia A, Panpradist N, Gale M, Freedman BS, Lutz BR, Bloom JD, Ruohola-Baker H, Whelan SP, Stewart L, Diamond MS, Veesler D, Jewett MC, Baker D (July 2021). “Multivalent designed proteins protect against SARS-CoV-2 variants of concern”. bioRxiv: 2021.07.07.451375. doi:10.1101/2021.07.07.451375. PMC 8282097. PMID 34268509. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282097/. 
  65. ^ Big news out of @UWproteindesign: a new candidate treatment for #COVID19! More lab testing still needed. Thanks to all the volunteers who helped crunch data for this project!!”. Rosetta@home Twitter. Rosetta@home Twitter (2020年9月9日). 2020年9月19日閲覧。
  66. ^ De novo minibinders target SARS-CoV-2 Spike protein”. Baker Lab. Baker Lab (2020年9月9日). 2020年9月19日閲覧。
  67. ^ Silva DA, Yu S, Ulge UY, Spangler JB, Jude KM, Labão-Almeida C, Ali LR, Quijano-Rubio A, Ruterbusch M, Leung I, Biary T, Crowley SJ, Marcos E, Walkey CD, Weitzner BD, Pardo-Avila F, Castellanos J, Carter L, Stewart L, Riddell SR, Pepper M, Bernardes GJ, Dougan M, Garcia KC, Baker D (January 2019). “De novo design of potent and selective mimics of IL-2 and IL-15.”. Nature 565 (7738): 186–191. Bibcode2019Natur.565..186S. doi:10.1038/s41586-018-0830-7. PMC 6521699. PMID 30626941. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6521699/. 
  68. ^ Another publication in Nature describing the first de novo designed proteins with anti-cancer activity”. Rosetta@home (2020年1月14日). 2020年9月19日閲覧。
  69. ^ Hutson, Matthew (2020年9月18日). “Scientists Advance on One of Technology's Holy Grails”. The New Yorker. https://www.newyorker.com/tech/annals-of-technology/the-promise-of-designer-protein-in-the-fight-against-covid-19 2020年9月19日閲覧。 
  70. ^ Neoleukin Therapeutics Announces Submission of Investigational New Drug Application for NL-201 De Novo Protein Immunotherapy Candidate for Cancer”. Neoleukin Therapeutics (2020年12月10日). 2020年12月10日閲覧。
  71. ^ Simons KT, Bonneau R, Ruczinski I, Baker D (1999). “Ab initio protein structure prediction of CASP III targets using Rosetta”. Proteins Suppl 3: 171–76. doi:10.1002/(SICI)1097-0134(1999)37:3+<171::AID-PROT21>3.0.CO;2-Z. PMID 10526365. 
  72. ^ Interview with David Baker”. Team Picard Distributed Computing (2006年). 2009年2月18日時点のオリジナルよりアーカイブ。2008年12月23日閲覧。
  73. ^ Rosetta@home: News archive”. Rosetta@home. University of Washington (2016年). 2016年7月20日閲覧。
  74. ^ Nauli S, Kuhlman B, Baker D (July 2001). “Computer-based redesign of a protein folding pathway”. Nature Structural Biology 8 (7): 602–05. doi:10.1038/89638. PMID 11427890. 
  75. ^ Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D (November 2003). “Design of a novel globular protein fold with atomic-level accuracy”. Science 302 (5649): 1364–68. Bibcode2003Sci...302.1364K. doi:10.1126/science.1089427. PMID 14631033. 
  76. ^ Jones DT (November 2003). “Structural biology. Learning to speak the language of proteins”. Science 302 (5649): 1347–48. doi:10.1126/science.1092492. PMID 14631028. 
  77. ^ von Grotthuss M, Wyrwicz LS, Pas J, Rychlewski L (June 2004). “Predicting protein structures accurately”. Science 304 (5677): 1597–99; author reply 1597–99. doi:10.1126/science.304.5677.1597b. PMID 15192202. 
  78. ^ Articles citing: Kuhlman et al. (2003) 'Design of a novel globular protein fold with atomic-level accuracy'”. ISI Web of Science. 2008年7月10日閲覧。
  79. ^ October 2005 molecule of the month: Designer proteins”. RCSB Protein Data Bank. 2008年9月7日閲覧。
  80. ^ Rosetta@home: Research Overview”. Rosetta@home. University of Washington (2007年). 2008年9月25日時点のオリジナルよりアーカイブ。2008年10月7日閲覧。
  81. ^ Kuhlman laboratory homepage”. Kuhlman Laboratory. University of North Carolina. 2008年9月7日閲覧。
  82. ^ RosettaDesign web server”. Kuhlman Laboratory. University of North Carolina. 2008年9月7日閲覧。
  83. ^ Gray JJ, Moughon SE, Kortemme T, etal (July 2003). “Protein–protein docking predictions for the CAPRI experiment”. Proteins 52 (1): 118–22. doi:10.1002/prot.10384. PMID 12784377. 
  84. ^ Gray JJ, Moughon SE, Kortemme T, etal (July 2003). “Protein–protein docking predictions for the CAPRI experiment”. Proteins 52 (1): 118–22. doi:10.1002/prot.10384. PMID 12784377. 
  85. ^ Schueler-Furman O, Wang C, Baker D (August 2005). “Progress in protein–protein docking: atomic resolution predictions in the CAPRI experiment using RosettaDock with an improved treatment of side-chain flexibility”. Proteins 60 (2): 187–94. doi:10.1002/prot.20556. PMID 15981249. 
  86. ^ Daily MD, Masica D, Sivasubramanian A, Somarouthu S, Gray JJ (2005). “CAPRI rounds 3–5 reveal promising successes and future challenges for RosettaDock”. Proteins 60 (2): 181–86. doi:10.1002/prot.20555. PMID 15981262. https://europepmc.org/article/med/15981262. 
  87. ^ Méndez R, Leplae R, Lensink MF, Wodak SJ (2005). “Assessment of CAPRI predictions in rounds 3–5 shows progress in docking procedures”. Proteins 60 (2): 150–69. doi:10.1002/prot.20551. PMID 15981261. https://europepmc.org/article/med/15981261. 
  88. ^ RosettaDock server”. Rosetta Commons. 2020年3月28日閲覧。
  89. ^ Protein–protein docking at Rosetta@home”. Rosetta@home forums. University of Washington. 2008年9月7日閲覧。
  90. ^ Lensink MF, Méndez R, Wodak SJ (December 2007). “Docking and scoring protein complexes: CAPRI 3rd Edition”. Proteins 69 (4): 704–18. doi:10.1002/prot.21804. PMID 17918726. 
  91. ^ Wang C, Schueler-Furman O, Andre I, etal (December 2007). “RosettaDock in CAPRI rounds 6–12”. Proteins 69 (4): 758–63. doi:10.1002/prot.21684. PMID 17671979. 
  92. ^ Robetta web server”. Baker laboratory. University of Washington. 2019年5月7日閲覧。
  93. ^ Aloy P, Stark A, Hadley C, Russell RB (2003). “Predictions without templates: new folds, secondary structure, and contacts in CASP5”. Proteins 53 Suppl 6: 436–56. doi:10.1002/prot.10546. PMID 14579333. 
  94. ^ Jauch R, Yeo HC, Kolatkar PR, Clarke ND (2007). “Assessment of CASP7 structure predictions for template free targets”. Proteins 69 Suppl 8: 57–67. doi:10.1002/prot.21771. PMID 17894330. 
  95. ^ Tress M, Ezkurdia I, Graña O, López G, Valencia A (2005). “Assessment of predictions submitted for the CASP6 comparative modeling category”. Proteins 61 Suppl 7: 27–45. doi:10.1002/prot.20720. PMID 16187345. 
  96. ^ Battey JN, Kopp J, Bordoli L, Read RJ, Clarke ND, Schwede T (2007). “Automated server predictions in CASP7”. Proteins 69 Suppl 8: 68–82. doi:10.1002/prot.21761. PMID 17894354. 
  97. ^ Chivian D, Kim DE, Malmström L, Schonbrun J, Rohl CA, Baker D (2005). “Prediction of CASP6 structures using automated Robetta protocols”. Proteins 61 Suppl 7: 157–66. doi:10.1002/prot.20733. PMID 16187358. 
  98. ^ Baker D. “David Baker's Rosetta@home journal, message 52902”. Rosetta@home forums. University of Washington. 2008年9月7日閲覧。
  99. ^ Das R, Qian B, Raman S, etal (2007). “Structure prediction for CASP7 targets using extensive all-atom refinement with Rosetta@home”. Proteins 69 Suppl 8: 118–28. doi:10.1002/prot.21636. PMID 17894356. 
  100. ^ Ovchinnikov, S; Kim, DE; Wang, RY; Liu, Y; DiMaio, F; Baker, D (September 2016). “Improved de novo structure prediction in CASP11 by incorporating coevolution information into Rosetta.”. Proteins 84 Suppl 1: 67–75. doi:10.1002/prot.24974. PMC 5490371. PMID 26677056. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5490371/. 
  101. ^ Baker D. “David Baker's Rosetta@home journal (message 52963)”. Rosetta@home forums. University of Washington. 2008年9月16日閲覧。
  102. ^ Foldit forums: How many users does Foldit have? Etc. (message 2)”. University of Washington. 2008年9月27日閲覧。
  103. ^ Foldit: Frequently Asked Questions”. fold.it. University of Washington. 2008年9月19日閲覧。
  104. ^ Project list – BOINC”. University of California. 2008年9月8日閲覧。
  105. ^ Pande Group (2010年). “High Performance FAQ” (FAQ). Stanford University. 2012年9月21日時点のオリジナルよりアーカイブ。2011年9月19日閲覧。
  106. ^ 7im (2010年4月2日). “Re: Answers to: Reasons for not using F@H”. 2011年9月19日閲覧。
  107. ^ Vijay Pande (2011年8月5日). “Results page updated – new key result published in our work in Alzheimer's Disease”. 2011年9月19日閲覧。
  108. ^ Pande Group. “Folding@home Diseases Studied FAQ” (FAQ). Stanford University. 2007年10月11日時点のオリジナルよりアーカイブ。2011年9月12日閲覧。
  109. ^ Vijay Pande (2007年9月26日). “How FAH works: Molecular dynamics”. 2011年9月10日閲覧。
  110. ^ tjlane (2011年6月9日). “Re: Course grained Protein folding in under 10 minutes”. 2011年9月19日閲覧。
  111. ^ tjlane (2011年6月9日). “Re: Course grained Protein folding in under 10 minutes”. 2011年9月19日閲覧。
  112. ^ jmn (2011年7月29日). “Rosetta@home and Folding@home: additional projects”. 2011年9月19日閲覧。
  113. ^ Pande Group. “Client Statistics by OS”. Stanford University. 2011年10月18日閲覧。
  114. ^ Rosetta@home: Credit overview”. boincstats.com. 2020年3月28日閲覧。
  115. ^ Malmström L, Riffle M, Strauss CE, etal (April 2007). “Superfamily assignments for the yeast proteome through integration of structure prediction with the gene ontology”. PLOS Biology 5 (4): e76. doi:10.1371/journal.pbio.0050076. PMC 1828141. PMID 17373854. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1828141/. 
  116. ^ Bonneau R (2006年). “World Community Grid Message Board Posts: HPF -> HPF2 transition”. Bonneau Lab, New York University. 2008年9月7日閲覧。
  117. ^ List of Richard Bonneau's publications”. Bonneau Lab, New York University. 2008年7月7日時点のオリジナルよりアーカイブ。2008年9月7日閲覧。
  118. ^ Bonneau R. “World Community Grid Message Board Posts”. Bonneau Lab, New York University. 2008年7月4日時点のオリジナルよりアーカイブ。2008年9月7日閲覧。
  119. ^ RALPH@home website”. RALPH@home forums. University of Washington. 2008年9月7日閲覧。
  120. ^ Predictor@home: Developing new application areas for P@H”. The Brooks Research Group. 2008年9月7日閲覧。[リンク切れ]
  121. ^ Carrillo-Tripp M (2007年). “dTASSER”. The Scripps Research Institute. 2007年7月6日時点のオリジナルよりアーカイブ。2008年9月7日閲覧。
  122. ^ Rosetta@home: Credit overview”. boincstats.com. 2020年3月28日閲覧。
  123. ^ Rosetta@home”. 2020年3月19日閲覧。
  124. ^ Rosetta@home: The new credit system explained”. Rosetta@home forums. University of Washington (2006年). 2008年10月8日閲覧。
  125. ^ BOINCstats: Project Credit Comparison”. boincstats.com (2008年). 2008年9月13日時点のオリジナルよりアーカイブ。2008年10月8日閲覧。
  126. ^ Credit divided over projects”. boincstats.com. 2015年2月19日閲覧。
  127. ^ Das R, Qian B, Raman S, etal (2007). “Structure prediction for CASP7 targets using extensive all-atom refinement with Rosetta@home”. Proteins 69 Suppl 8: 118–28. doi:10.1002/prot.21636. PMID 17894356. 
  128. ^ Rosetta@home: Predictor of the day archive”. Rosetta@home. University of Washington (2008年). 2008年9月24日時点のオリジナルよりアーカイブ。2008年10月8日閲覧。
  129. ^ Rosetta@home: Protein Folding, Design, and Docking”. Rosetta@home. University of Washington (2008年). 2008年10月8日閲覧。





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「Rosetta@home」の関連用語

Rosetta@homeのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



Rosetta@homeのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのRosetta@home (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS