高階の全微分
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/19 04:41 UTC 版)
函数の全微分をとる操作では、一変数の場合と同じやり方で考えたのでは、別の函数(導函数)を与えることは無い。これは多変数函数の全微分係数が一変数函数の微分係数よりも多くの情報をもつものであることからくるもので、実際に全微分は函数の始域となる空間の接束から終域となる空間の接束への写像を与えるものになっている。 自然な意味で高階導函数に対応する概念は、線型写像でも接束上の写像でもなく、また全微分を繰り返すことで構成されるものでもない。 ジェット 高階の全導函数となるべきものはジェット(英語版)と呼ばれるもので、これは線型写像ではない(高階導函数は凹性(凸性)などの微妙な幾何学的性質を反映するので、これはベクトルのような線型の情報では記述できない)し、接束上の写像でもない(接束は底空間と方向微分に対してしか意味を成さない)。ジェットは高階の情報を反映することから、各方向への高階の変化を表す追加の座標を引数としてとる。このような余分の座標によって決定される空間はジェット束(英語版)と呼ばれる。函数の全微分と偏微分との関係に並列に対応するものは、函数の k-階のジェットと k 階以下の偏微分との関係として理解することができる。 高階フレシェ微分 全微分を繰り返しとることは、高階のフレシェ微分(を Rp に特殊化したもの)として定式化することができる。つまり、k-階の全微分は D k f : R n → L k ( R n × ⋯ × R n , R m ) {\displaystyle D^{k}f\colon \mathbb {R} ^{n}\to L^{k}(\mathbb {R} ^{n}\times \cdots \times \mathbb {R} ^{n},\,\mathbb {R} ^{m})} なる写像として解釈することができる。この写像は点 x ∈ Rn に対して、Rn から Rm への k-重線型写像の空間の元で、その点において f を(ある特定の明確な意味において)「最適」に k-重線型近似するものを割り当てる。対角線埋め込み Δ: x → (x, x, …, x) との合成を考えれば、多変数のテイラー級数も最初の方の項が f ( x ) ≈ f ( a ) + ( D f ) ( x ) + ( D 2 f ) ( Δ ( x − a ) ) + ⋯ = f ( a ) + ( D f ) ( x − a ) + ( D 2 f ) ( x − a , x − a ) + ⋯ = f ( a ) + ∑ i ( D f ) i ( x − a ) i + ∑ j , k ( D 2 f ) j k ( x − a ) j ( x − a ) k + ⋯ {\displaystyle {\begin{aligned}f(\mathbf {x} )&\approx f(\mathbf {a} )+(Df)(\mathbf {x} )+(D^{2}f)(\Delta (\mathbf {x-a} ))+\cdots \\&=f(\mathbf {a} )+(Df)(\mathbf {x-a} )+(D^{2}f)(\mathbf {x-a} ,\mathbf {x-a} )+\cdots \\&=f(\mathbf {a} )+\sum _{i}(Df)_{i}(\mathbf {x-a} )^{i}+\sum _{j,k}(D^{2}f)_{jk}(\mathbf {x-a} )^{j}(\mathbf {x-a} )^{k}+\cdots \end{aligned}}} となるようなものとして与えられる。ただし、f(a) は定値函数と同一視され、各 (x − a)i はベクトル x − a の第 i-成分で、(Df)i, (D2f)jk, … は線型変換としての Df, D2f, … の各成分を表す。
※この「高階の全微分」の解説は、「微分」の解説の一部です。
「高階の全微分」を含む「微分」の記事については、「微分」の概要を参照ください。
- 高階の全微分のページへのリンク