昇鎖条件と降鎖条件
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/03/27 07:21 UTC 版)
「エミー・ネーター」の記事における「昇鎖条件と降鎖条件」の解説
この時代、ネーターは昇鎖条件 (Teilerkettensatz) や降鎖条件 (Vielfachenkettensatz) を巧みに用いたことで有名になった。集合 S の空でない部分集合の列 A1, A2, A3, ... は、各部分集合が次の部分集合の部分集合になっている A 1 ⊂ A 2 ⊂ A 3 ⊂ ⋯ {\displaystyle A_{1}\subset A_{2}\subset A_{3}\subset \cdots } ときに通常 ascending と言われる。 逆に、S の部分集合の列が descending とは、各部分集合が次の部分集合を含む A 1 ⊃ A 2 ⊃ A 3 ⊃ ⋯ {\displaystyle A_{1}\supset A_{2}\supset A_{3}\supset \cdots } ことをいう。 鎖はある n が存在してすべての m ≥ n に対して An = Am となるようなとき有限個のステップの後停留的になるという。与えられた集合の部分集合の集まりが昇鎖条件を満たすとは、任意の昇鎖列が有限個のステップの後停留的になることをいう。降鎖条件を満たすとは任意の降鎖列が有限個のステップの後停留的になることをいう。 昇鎖条件や降鎖条件は、多くの種類の数学的対象に適用できるという意味で、一般的であり、一見すると、それほど強力には思われないかもしれない。しかしながら、ネーターはそのような条件を最大限に生かす方法を示した。例えば、それらを使って部分対象のすべての集合は極大/極小元を持つこととか複雑な対象が少ない個数の元によって生成できることとかを示す方法である。これらの結論はしばしば証明の重要なステップである。 抽象代数学の対象の多くの種類は鎖条件を満たすことができ、通常それらが昇鎖条件を満たすときそれらは彼女に敬意を表してネーター(的)と呼ばれる。定義により、ネーター環はその左と右イデアルに対し昇鎖条件を満たし、ネーター群(英語版)は部分群の任意の真の昇鎖が有限である群である。ネーター加群は部分加群の任意の真の昇鎖が有限個のステップでとまる加群である。ネーター空間は開部分空間の任意の真の昇鎖が有限個のステップの後にとまる位相空間であり、この定義によりネーター環のスペクトルはネーター位相空間となる。 鎖条件はしばしば部分対象にも「引き継がれる」。例えば、ネーター空間のすべての部分空間はそれ自身ネーターであり、ネーター群のすべての部分群や商群もネーターであり、必要な変更を加えて(英語版)同じことがネーター加群の部分加群と商加群に対して成り立つ。ネーター環のすべての商環はネーターであるが、部分環は必ずしもそうでない。鎖条件はまたネーター的対象の組み合わせや拡大に対しても引き継がれることがある。例えば、ネーター環の有限直和はネーターであり、ネーター環上の形式冪級数環もネーターである。 そのような鎖条件の別の応用は、数学的帰納法の一般化であるネーター帰納法(整礎帰納法とも呼ばれる)にある。それはしばしば対象の集まりについての一般的なステートメントをその集まりの特定の対象についてのステートメントに帰着するために使われる。S を半順序集合としよう。S の対象についての主張を証明する1つの方法は反例の存在を仮定し矛盾を導くことによってもとの主張の対偶を証明することである。ネーター帰納法の基本的な前提は S の任意の空でない部分集合は極小元を持つことである。特に、すべての反例の集合は極小元、極小の反例を含む。したがって、もとの主張を証明するためには、表面上はるかに弱い何か:任意の反例に対してより小さい反例が存在することを証明すれば十分である。
※この「昇鎖条件と降鎖条件」の解説は、「エミー・ネーター」の解説の一部です。
「昇鎖条件と降鎖条件」を含む「エミー・ネーター」の記事については、「エミー・ネーター」の概要を参照ください。
- 昇鎖条件と降鎖条件のページへのリンク