多孔質構造
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/10/16 16:53 UTC 版)
多孔質構造には様々な用途がある。多くの化学者と材料科学者が、自動車で使用する水素の貯蔵のための金属有機構造体 (metal-Organic Framework, MOF) の改良に取り組んでいる。これらの高度に秩序だった結晶包摂錯体は、触媒や分子分離装置としての利用が期待されている。分子組織は、しばしば水素結合などの分子間力によって制御されている。しかしながら水素結合の利用は、しばしば密なパッキングにより利用できる孔の大きさの範囲を制限する。 Piggeらは、アミン、含窒素複素環化合物、カルボニル基とその他のハロゲン化有機化合物との間のハロゲン結合相互作用を利用して、多孔質構造を構築した。これは、水素結合よりも著しく弱い相互作用であるハロゲン結合が介在する有機結晶ネットワークは珍しいため、意義深い。 ジクロロメタンやピリジン、ベンゼンなど様々な溶媒中での1と2(図-上)の結晶構造が得られた。著者らは、多孔包摂錯体は明らかに、部分的には前例のないI-π相互作用とヨウ素とカルボニル基との間のハロゲン結合によって、仲介されていると述べている。結晶構造(図-下)は三角形配列をしており、2はほぼ対照的だった。加えて、全てのハロゲン結合相互作用の組は同一ではなく、ハロゲンとハロゲン結合アクセプターとの間の全ての分子間相互作用はファンデルワールス半径の和よりもわずかに越えていた。これはわずかに弱いハロゲン結合であることを示しており、この構造により柔軟性を与えている。二次元レイヤーは、それぞれ平行に積み上がり溶媒で満たされるチャネルを作り出している。 溶媒相互作用、特にピリジンとクロロホルム、もまた六角形構造の形成において言及されている。始めに、これらの溶媒によって形成される結晶がチャネル構造を形成する。長い時間をかけて、新しい針状の溶媒を含まない構造が密にパッキングされる。この針は実際に熱力学的に安定な結晶である。著者らは、この情報が、水素結合とハロゲン結合の相補的性質をより理解し、新たな低分子を設計するのに活用されることを望んでいる。
※この「多孔質構造」の解説は、「ハロゲン結合」の解説の一部です。
「多孔質構造」を含む「ハロゲン結合」の記事については、「ハロゲン結合」の概要を参照ください。
- 多孔質構造のページへのリンク