反射光の変動による検出
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/03/07 14:53 UTC 版)
「太陽系外惑星の発見方法」の記事における「反射光の変動による検出」の解説
主星に非常に近い軌道を公転している惑星は月の満ち欠けように見かけの形状が変化するものもある。さらに、このような惑星は主星からの強烈な放射によって加熱され、それに起因する惑星の熱放射は検出可能な強度となるものの、望遠鏡では惑星からの光と恒星の像とを分離する事は極めて難しい。惑星の光は軌道上の位置に応じて周期的に変化するが、その変化は非常に小さく、必要とされる測光精度は、太陽のような恒星の前を通過する地球サイズの惑星を検出するのと、ほぼ同じである。しかし、主星に非常に近い距離を公転しているホット・ジュピターの場合は、ケプラーのような宇宙望遠鏡で検出できる。惑星が高いアルベドを持っている場合は、可視光で検出するのがより容易になる。また、主星の表面温度が低温の場合、赤外線での検出が容易になる。この方法なら惑星の軌道傾斜角にほぼ依存しないので、恒星面通過を起こさなくても惑星を発見出来る。しかし、惑星が地球から見て真正面を向いた真円軌道である場合は、反射光の強さが変動しないため、この手法での検出は出来ない。 もし巨大惑星の位相関数が分かれば、それは惑星の熱特性と大気の関数にもなる。したがって、位相曲線は大気粒子のサイズ分布など惑星に関する他の特性について制約できる可能性がある。 惑星がトランジットを起こしており、その大きさがわかっている場合、位相変動曲線は惑星のアルベド(反射能)を計算または範囲を制約するのに役立つ。アルベドを計算しようとすると惑星からの光が干渉する可能性があるため、温度が非常に高温になっている惑星ではより計算が困難になる。複数の波長で光の変化を観測するとき、理論上ではアルベドはトランジットを起こさない惑星の検出にも利用できる。これにより、この手法ならばトランジットを起こさない惑星であってもその大きさを知ることができる。 2015年に、ある国際研究チームが、初めて太陽系外惑星の反射光によるスペクトルを得る事に成功した。対象となったのは、主系列星を公転している惑星として初めて発見された、ペガスス座51番星bであった。ぺガスス座51番星bは1995年にドップラー分光法を用いて発見された惑星であり、チリにあるラ・シヤ天文台の高精度視線速度系外惑星探査装置(HARPS)を用いて観測することで、惑星からの反射スペクトルを取得することに成功している。 探査機COROTやケプラー宇宙望遠鏡も惑星からの反射光を観測したが、これらの惑星は、観測以前からすでに存在が知られていた。この手法で初めて発見された惑星は、ケプラー70と呼ばれるB型準矮星を公転しているケプラー70bとケプラー70cである。
※この「反射光の変動による検出」の解説は、「太陽系外惑星の発見方法」の解説の一部です。
「反射光の変動による検出」を含む「太陽系外惑星の発見方法」の記事については、「太陽系外惑星の発見方法」の概要を参照ください。
- 反射光の変動による検出のページへのリンク