円の面積
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/12/11 23:23 UTC 版)
円の面積(えんのめんせき)
古代エジプトにおいては、リンド・パピルスの問題50に円の面積を求める方法が記録されている[注釈 1]。
リンド・パピルスでは、円の直径
- 命題1
- 円の面積は、円周の長さを底辺、半径を高さとする直角三角形の面積に等しい
- 命題3
-
円周と直径との比は、
『九章算術』劉徽による円に内接する正多角形を用いた円の求積 『九章算術』に註釈をつけた魏の劉徽は、円の内接する正6角形から正12角形、正24角形と辺数を増やしていくと、やがて内接多角形の面積は円の面積に差は無くなる、としている[17]。
具体的には、円に内接する正n多角形のうち1つの三角形(△OAB)に対し、三角形の底辺とそのの二等分線と円周上の交点を高さとする長方形で囲まれる面積(□AA'B'B)を考えると、内接する正n角形の面積とその面積に長方形の面積を加えたものの間に円の面積がある、ということを利用している(右図)。
正n角形の面積を
半径 半径 円に内接/外接する正多角形の面積を求める 半径rの円に内接する正n角形において、1区画の三角形の面積を考える(右図(a))。
三角形の高さは
円環の積分による円の求積 原点を中心として、半径
円の面積
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/03/30 09:06 UTC 版)
「インディアナ州円周率法案」の記事における「円の面積」の解説
グッドウィンの本来の目標は、円周の長さを測定することではなく、円を四角にすることだった。彼はそれを文字通りに円と同じ面積を持つ正方形を見つけることだと解釈した。彼は、アルキメデスの円の面積の公式(直径に円周の 1/4 を掛けること)が円を四角にする古代の問題の解決策にならないことを知っていた。これは、その問題がコンパスと定規だけを使用してその面積を作図することであって、アルキメデスは円周と同じ長さの直線を作図する方法を与えなかったからなのであるが、グッドウィンはこの重要な必要事項に明らかに気付いていなかった。つまり彼は、アルキメデスの公式に関する問題とはそれが間違った結果を与えることであって円積問題はそれを「正しい」公式に置き換えれば解けるものと信じていたのである。 問題の法案では、彼は議論なしに独自の方法を提案した。 「ある等辺長方形(原文:equilateral rectangle)の面積は、一辺の平方であるから、円の面積は、その四分円の弧と等しい長さの一辺を持つ正方形の面積に等しいことがわかった。」 「等辺長方形」が正方形以外の何かであることはありえないので、これは無意味な言辞に見える。恐らくグッドウィンは、「正方形」の意味のsquareと、「平方」の意味のsquareを区別したかったのだと思われる。 しかしながら、法案の残りの部分では、単に円の面積は同じ長さの外周を持つ正方形の面積と同じであるという主張であることが明らかになる。例えば、上記の引用の直後に、法案は次のように述べている。 「円の面積の計算で用いられる現在の法則において、直径を線形の単位として用いるのは完全に間違っている。円の面積を、その外周が円周の1と5分の1倍に等しい正方形の面積で代表しているためである。」 上記のモデル円では、(グッドウィンの円周と直径の値を正しいとすると)アルキメデスの公式による面積は 80 になる。しかし、グッドウィンが提案した法則によれば、面積は 64 になる。さらに、80 は 80 の 1/5 だけ 64 を上回っている。 そして、グッドウィンは、80 = 64 × (1 + 1/5) と、64 = 80 × (1 − 1/5) を混同しているように見える。この近似は 1/5 よりずっと小さい値でのみ正しい。 グッドウィンの法則によって計算される面積は、真の円の面積の π/4 倍である。このため、円周率法案に関する多くの記事で円周率を 4 と主張したものと解釈されている。しかしながら、グッドウィンがそのような要求をするつもりだった証拠は法案の中には無い。むしろ逆に彼は、円の面積がその直径と何らかの関連を持っていることを繰り返し否定している。 面積の相対誤差 1 − π/4 は、約21パーセントになる。これは前の節で述べたモデル円の長さの近似よりさらに深刻である。グッドウィンがなぜ彼の法則が正しいと信じたのかは分からない。一般的に、外周の長さが等しい図形は面積も等しいわけではない。高さと幅が同じくらいの図形と、長くて薄い図形を比較すれば分かりやすい。恐らくグッドウィンは、(円や正方形のように)高さと幅が等しい限りは、円周が等しければ面積も等しくなると誤って結論付けたのであろうといわれている。
※この「円の面積」の解説は、「インディアナ州円周率法案」の解説の一部です。
「円の面積」を含む「インディアナ州円周率法案」の記事については、「インディアナ州円周率法案」の概要を参照ください。
「円の面積」の例文・使い方・用例・文例
- 円の面積
- 円の面積のページへのリンク