不活性や欠損
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/10 08:12 UTC 版)
堅く折りたたまれたセルピンは高エネルギー状態にあるため、変異はセルピンが正しく阻害作用を示す前に、セルピンの立体構造を容易に低エネルギーの立体構造(弛緩型構造や潜在型構造)へと変化させてしまう。 RCLのAシートへの取り込み頻度や範囲に影響する変異は、セルピンがプロテアーゼと接触する前に立体構造のS-R遷移を起こす原因となる。セルピン分子はこの立体構造の変化を一度しか行えないため、結果として生じる不発のセルピン分子は不活性となり、標的プロテアーゼを適切に制御することができなくなる。同様に、単量体の潜在型構造への不適切な遷移を促進する変異も、活性化セルピンの量を減らすため疾患の原因となり得る。例えばアンチトロンビンの疾患関連多型であるwibble型やwobble型は両者とも潜在型構造の形成を促進する。 アンチトリプシンの疾患関連変異 (L55P) は上記以外の不活性構造、「δ型立体構造」の存在を明らかにした。δ型立体構造においてはRCLの4つのアミノ酸が、シートAの頂上部へ取り込まれる。シートAの下部はαヘリックスの一つ、Fヘリックスが部分的にβストランドへ構造変化を起こすことで埋められ、βシートの水素結合を補完する。アンチトリプシン以外のセルピンがこの異性体型をとることができるか、またδ型構造が機能的役割をもつかどうかは明らかでないが、チロキシン結合グロブリンはチロキシンの放出時にδ型構造をとる可能性があると推測されている。非阻害剤型セルピンが変異を起こした場合も疾患の原因となりうる。例えばSERPINF1の変異はヒトのIV型骨形成不全症の原因となる。 本来必要なセルピンが無い場合、通常抑制されているプロテアーゼが過剰に活性化し、セルピン病(セルピノパシー)へと移行する。従ってセルピンの単純な欠損(例:欠損変異)は疾患を生じる。マウスにおいては、セルピンが無い場合の影響からセルピンの通常の機能を実験的に決定するために、遺伝子ノックアウトが用いられる。
※この「不活性や欠損」の解説は、「セルピン」の解説の一部です。
「不活性や欠損」を含む「セルピン」の記事については、「セルピン」の概要を参照ください。
- 不活性や欠損のページへのリンク