プロセッシブ型ミオシン
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/10/04 04:15 UTC 版)
アクチンフィラメントから完全に解離する事が無く、連続運動を行う事が出来るプロセッシブ型ミオシンの代表例としては、ミオシンVa, b, VI, VII, IX等が知られている。特に、ミオシンVaやVIを用いた研究が盛んに行われて来ている。ミオシンVcや酵母型ミオシンVは、ミオシンVファミリーの仲間であるが、これらはノンプロセッシブ型ミオシンであり、ミオシンVファミリー全体がプロセッシブ型ミオシンでは無い。プロセッシブ型ミオシンのATP加水分解サイクルに於ける律速段階はADP放出過程である。ADP結合型ミオシンはアクチンフィラメントに対して強結合状態を取る為に、ADP放出が律速段階になる事によってプロセッシブ型ミオシンは安定して、アクチンフィラメント上に結合する事が出来ると考えられている。 ミオシンXIを除き、他のプロセッシブ型ミオシンは二量体を形成するミオシンであり、ヒトが歩行するように交互にモータードメインをアクチンフィラメント上で動かす事によって連続運動を行うと考えられている(ハンドオーバーハンドモデル)。この過程は蛍光標識したミオシン分子を用いた1分子計測や、原子間力顕微鏡(AFM)を用いた1分子計測により既に直接可視化されている。 ハンドオーバーハンドモデルに於いては、二量体を形成する2つのミオシン分子間で協調的なATP結合サイクルが行われる事が必須である。この分子間の協調性を達成しているのが、分子間に働く分子内張力であると考えられている。分子内張力によるATP加水分解サイクル制御は、現在迄に多くのミオシン分子を用いてレーザートラップを用いた1分子計測により確認されている。1つのミオシン二量体内に於いて、進行方向側のアクチンフィラメントに結合したミオシンには進行方向逆向きの分子内張力が働く事になり、一方で、進行方向後ろ側(次に力発生するミオシン)には進行方向側の分子内張力が働く事になる。通常の律速段階もADP放出であるが、進行方向逆側の分子内張力が働く事で、ミオシンからのADP放出はさらに抑制される。一方で、進行方向側の分子内張力が働いたミオシンからのADP放出は促進されると考えられている。そのために、ミオシン二量体に於いて、常に進行方向後ろ側のミオシンからのみADPの放出が起こる事になる。ADP解離が起こったミオシンには、ATPが結合する事が出来る為に、次のATP加水分解サイクルが開始される。このように、分子内張力によって常に進行方向後ろ側のミオシンからのみADP放出が起こり、ATP結合が起こるように制御されている。また、この分子内張力によるATP加水分解サイクル制御機構は、ノンプロセッシブ型ミオシンでも確認されており、ミオシンファミリー内に於いて一般的な性質であると考えられている。 単量体のミオシンIXによる連続歩行機構は未だに解明されていない点が多いが、アクチンフィラメントと相互作用を行うと考えられているLoop2構造が、ミオシンIXでは他のミオシンファミリーと比較して特異的に長い事から、この部分の特殊な構造は、単量体による連続運動を可能にしていると推察されている。
※この「プロセッシブ型ミオシン」の解説は、「ミオシン」の解説の一部です。
「プロセッシブ型ミオシン」を含む「ミオシン」の記事については、「ミオシン」の概要を参照ください。
- プロセッシブ型ミオシンのページへのリンク