ヒルベルト空間 応用

ヒルベルト空間

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2015/03/01 13:23 UTC 版)

応用

ヒルベルト空間の応用の多くは、ヒルベルト空間において射影基底変換といったような単純な幾何学的概念が、ふつうの有限次元の場合に考えられるそれらの自然な一般化になっているという事実に依拠して行われている。特に、ヒルベルト空間上の連続自己随伴線型作用素スペクトル論は、行列のふつうのスペクトル分解の一般化であり、これはヒルベルト空間論を他の数学や物理学の分野に応用する際にしばしば大きな役割を果たす。

スツルム・リウヴィル理論

振動元の倍音。これらはスツルム・リウヴィル問題の固有関数で、固有値 1,1/2,1/3,…倍音列を成す。

常微分方程式論において、微分方程式の固有関数および固有値の振る舞いを調べるのに適当なヒルベルト空間上のスペクトル法が利用できる。例えば、ヴァイオリンの弦やドラムの調波の研究から生じたスツルム・リウヴィル問題は、常微分方程式論の中心的な問題である[29]。スツルム・リウヴィル問題は区間 [a,b] 上の未知関数 y に対する常微分方程式

 -\frac{d}{dx}\left[p(x)\frac{dy}{ dx}\right]+q(x)y=\lambda w(x)y

で、一般斉次ロビン境界条件

\begin{cases}
\alpha y(a)+\alpha' y'(a)=0\\
\beta y(b) + \beta' y'(b)=0.
\end{cases}

を満足するものである。関数 p, q, および w は所与で、方程式の解となる関数 y および定数 λ を求める。同問題は、この系の固有値と呼ばれる特定の値の λ に対してだけ開を持つのだが、それのことはこの系に対するグリーン関数によって定まる積分作用素コンパクト作用素のスペクトル論を適用した結果として得られる。さらにはこの一般論からの別な帰結として、固有値 λ を無限大に発散する単調増大列に並べることができる[30]

偏微分方程式論

ヒルベルト空間は偏微分方程式を調べる基本的な道具である[22]。即ち、楕円型線型方程式のような偏微分方程式の多くのクラスでは、考える関数のクラスを拡張して弱解と呼ばれる超関数解を考えることができるが、弱解の定式化(弱定式化)の多くはヒルベルト空間を成すソボレフ関数のクラスを含むものになっているのである。解を求めたり、あるいはしばしばより重要な、与えられた境界条件に対する解の存在および一意性を示したりする解析学的な問題が、適当な弱定式化によって幾何学的問題に還元される。楕円型線型方程式に対して、かなりのクラスの問題が一意的に解けることを保証する幾何学的結果の一つがラックス・ミルグラムの定理である。この方法論は、偏微分方程式の数値解法に対するガレルキン法(有限要素法の一つ)の基盤をなしている[31]

典型的な例が、R2 の有界領域 Ω におけるポアソン方程式 −Δu = gディリクレ境界問題である。弱定式化は、境界上で消えている Ω 上連続的微分可能な任意の関数 v に対して

\int_\Omega \nabla u\cdot\nabla v = \int_\Omega gv

を満たすような関数 u を求めることからなる。これは、u およびその弱偏導関数がともに境界上で消えている Ω 上の自乗可積分関数となるような関数 u からなるヒルベルト空間 H1
0
(Ω) の言葉で書き直すことができて、問題はこの空間 H1
0
(Ω) の任意の元 v に対して

a(u,v) = b(v)

を満たすような u を空間 H1
0
(Ω) の中で求めることに帰着される。ただし、a および b はそれぞれ

a(u,v) = \int_\Omega \nabla u\cdot\nabla v,\quad b(v)= \int_\Omega gv

で与えられる連続な双線型形式および連続な線型汎関数である。ポアソン方程式は楕円型だから、ポアンカレの不等式から双線型形式 a が強圧的 (coercive) であることが従う。故に、ラックス・ミルグラムの定理は、この方程式の解の存在と一意性を保証する。

多くの楕円型偏微分方程式に対して同様のやり方でヒルベルト空間による定式化ができるので、それ故にラックス・ミルグラムの定理はそれらの解析における基本的な道具となる。同様の方法は抛物型偏微分方程式やある種の双曲型偏微分方程式に対しても、適当な修正を施せば通用する。

エルゴード理論

ブニモヴィチスタジアムにおける力学的ビリヤード球の軌道は、エルゴード力学系で記述される。

エルゴード理論の分野では、カオス力学系の長期的振る舞いを研究する。エルゴード理論が有効な原型的な場合というのは、熱力学における系である。この系の微視的な状態は(微粒子の間の個々の衝突の集まりとしては理解できないという意味で)極めて複雑であるにも拘らず、十分長期間にわたるその平均的振る舞いは素直であり、熱力学の法則が主張するのはこのような平均的挙動である。特に、熱力学の第0法則は「十分長い時間スケールを経れば平衡状態にある熱力学系の、その機能的に独立な測度は、温度の形でのその全エネルギーのみである」などと定式化できる。

エルゴート力学系は、(ハミルトニアンで測られる)エネルギーを除けば、相空間上の機能的に独立な保存量を持たないような系である。詳しく述べれば、エネルギー E を固定して、ΩE をエネルギーが E となる状態すべてからなる相空間の部分集合(エネルギー面)とし、Tt で相空間上の発展演算子を表せば、力学系がエルゴードとなるのは、ΩE 上の定数でない連続関数で、ΩE の任意の w と任意の時間 t において

f(T_tw) = f(w)

を満たすものがない場合に限る。リウヴィルの定理によれば、エネルギー面上の測度 μ で時間並進不変なものが存在する。結果として時間並進は、エネルギー面 ΩE 上の自乗可積分関数に内積を

\langle f,g\rangle_{L^2(\Omega_E,\mu)} = \int_E f\bar{g}\,d\mu

で入れたヒルベルト空間 L2E,μ) のユニタリ変換になる。

フォンノイマンの平均エルゴード定理[19]の主張は次のようなものである。

  • Ut がヒルベルト空間 H 上のユニタリ作用素からなる(強連続)一径数半群で、PUt の同時不動点全体の成す集合{xH | Utx = x for all t > 0} の上への直交射影とすると
    
  Px = \lim_{T\to\infty}\frac{1}{T}\int_0^TU_tx\,dt
    が成り立つ。

エルゴード系では、時間発展の固定集合は定数関数のみから成るので、先のエルゴード定理から任意の f ∈ L2E,μ) に対し

\underset{T\to\infty}{L^2\!\text{-}\!\lim{}} \frac{1}{T}\int_0^T f(T_tw)\,dt = \int_{\Omega_E} f(y)\,d\mu(y)

となることが従う[32]。つまり、観測可能な f の長期平均は、そのエネルギー面に亘ってとった期待値に等しい。

フーリエ解析

正弦波基底関数(下)の重ね合わせが鋸歯状波(上)になる。
球面上の自乗可積分関数全体の成すヒルベルト空間の正規直交基底を成す球面調和関数を、半径方向に沿ってグラフ化したもの

フーリエ解析の基本目的の一つは、関数を付随するフーリエ級数、即ち与えられた基底関数族の(必ずしも有限とは限らない)線型結合に分解することである。区間 [0,1] 上の関数 f に付随する古典フーリエ級数とは

\sum_{n=-\infty}^\infty a_n e^{2\pi in\theta}\quad (a_n := \int_0^1f(\theta)e^{-2\pi in\theta}\,d\theta)

なる形の級数である。

鋸歯状波関数に対するフーリエ級数の最初の数項を足し上げた例を図に示す。鋸歯状波関数の波長を λ とすると、(基本波、つまり n = 1 を除いて)それよりも短い波長 λ/nn は整数)をもつ正弦波が基底関数である。全ての基底関数が鋸歯状波の折れるところで交わり(結点)を持つが、基本波を除く全ての基底関数はそれ以外にも結点を持つ。鋸歯の周りでの基底関数の部分和の振動はギブズ現象と呼ばれるものである。

古典フーリエ級数論の特徴的な問題の一つに「関数 f のフーリエ級数がもとの関数に収束する(ことが仮にあったとする)ならば、それはどのような意味においての収束であるか」を問う問題がある。これに対して、ヒルベルト空間を用いた方法で答えを与えることができる[33]。関数族 en(θ) := e2πinθ はヒルベルト空間 L2([0,1]) の正規直交基底を成すから、それ故に任意の自乗可積分関数 f

f(\theta) = \sum_n a_n e_n(\theta),\quad (a_n := \langle f,e_n\rangle)

なる級数の形で表せて、さらにこの級数は L2([0,1]) の元として収束する(即ち、L2-収束、自乗平均収束)。

この問題を抽象的な観点からも見ることができる。任意のヒルベルト空間は正規直交基底を持ち、ヒルベルト空間の各元はそれら基底に属する元の定数倍の和として一意的に表すことができるが、この展開に現れる各基底元の係数のことをその元の抽象フーリエ係数と呼ぶことがある[34]。このような抽象化は、L2([0,1]) などの空間で別の基底関数系を用いることがより自然であるようなときに、特に有用である。関数を三角関数系に分解することは不適当だが、例えば直交多項式系ウェーブレット[35]および高次元において球面調和関数[36]へ展開することが適当であるような状況はたくさんある。

例えば、enL2[0,1] の任意の正規直交基底関数系とすると、与えられた L2[0,1] の関数は有限線型結合

f(x) \approx f_n (x) = a_1 e_1 (x) + a_2 e_2(x) + \cdots + a_n e_n (x)

で近似することができる[37]。右辺の係数 {aj} は、差の大きさ ‖ƒ − ƒn2 をできるだけ小さくするように定める。幾何学的には、最適近似は {ej} の線型結合全体の成す部分空間の上への ƒ の直交射影であり、

a_j = \int_0^1 \overline{e_j(x)}f (x) \, dx

によって計算することができる[38]。これが ‖ƒ − ƒn2 を最小化することはベッセルの不等式とパーセヴァルの公式からの帰結である。

種々の物理学的問題においては、関数を物理的に意味を持つ微分作用素(典型的なものはラプラス作用素)の固有関数系に分解することができ、微分作用素のスペクトルに関連して、関数のスペクトル研究の基礎を成している[39]。物理学への具体的な応用として太鼓の形を聴く (hearing the shape of a drum) 問題が挙げられる。これは「太鼓の皮が引き起こす基本振動モードを与えたとき、太鼓自身の形が推定できるか」というものである[40]。この問題の数学的定式化は、平面上のラプラス作用素のディリクレ固有値に関わるものになる(これはヴァイオリンの弦の基本振動モードを表す整数の直接の対応物である)。

スペクトル論も関数のフーリエ変換のある種の側面を下支えしている。フーリエ解析ではコンパクト集合上定義された関数を(ヴァイオリンの弦や太鼓の皮の振動に対応する)ラプラス変換の離散スペクトルに分解するのに対して、関数のフーリエ変換はユークリド空間の全域で定義された関数をラプラス作用素の連続スペクトルに関する成分に分解する。フーリエ変換があるヒルベルト空間(「時間領域」)から別なヒルベルト空間(「周波数領域」)への等距変換であることを主張するプランシュレルの定理として、フーリエ変換は幾何学的な意味を持つ。このフーリエ変換の等距性は、例えば非可換調和解析に現れる球関数に対するプランシュレルの定理などが示すとおり、抽象的な調和解析では繰り返し登場する主題である。

量子力学

水素原子における電子軌道エネルギー固有関数である。

ディラック[41]フォンノイマン[42]によって発展した量子力学の数学的に厳密な定式化は、量子力学系の取りうる状態(より正確には純粋状態)が、状態空間と呼ばれる可分な複素ヒルベルト空間に属する単位ベクトル(状態ベクトルという)によって(位相因子と呼ばれるノルム 1 の複素数の違いを除いて)表現される。つまり、取りうる状態はあるヒルベルト空間の射影化(ふつうは複素射影空間と呼ばれる)の元である。このヒルベルト空間が実際にどのようなものになるかは系に依存する。例えば、一つの非相対論的スピン 0 粒子の位置と運動量の状態は自乗可積分関数全体の成す空間であり、いっぽう一つの陽子のスピンの状態はスピノルの成す二次元複素ヒルベルト空間の長さ 1 の元である。各可観測量は状態空間上に作用する自己随伴線型作用素として表現され、可観測量の固有状態はその作用素の固有ベクトルに、固有ベクトルに対応する固有値は固有状態にある可観測量の値にそれぞれ対応する。

量子状態の時間発展はシュレーディンガー方程式によって記述され、そこに現れるハミルトニアン全エネルギーに対応する作用素)は時間発展を生み出す。

二つの状態ベクトルの間の内積は確率振幅として知られる複素数になる。量子力学系の理想的な測定の間で、系が与えられた初期状態から特定の固有状態に崩壊する確率は、初期状態から終期状態の間の確率振幅の絶対値の平方によって与えられる。測定の結果として可能なのは、作用素の固有値であり(これは自己随伴作用素のとり方を説明する)、全ての固有値は実数でなければならない。与えられた状態の可観測量の確率分布は対応する作用素のスペクトル分解を計算すれば求められる。

一般の系では、状態は典型的には純粋ではないが、密度行列(ヒルベルト空間上のトレース 1 の自己随伴作用素)で与えられる純粋状態の統計的混合(あるいは混合状態)として表される。さらに、一般の量子力学系では、単独の測定の効果は系のほかの部分に影響を及ぼしうるが、それは測度が正の作用素値測度で取り替えたものとして記述される。従って、一般論として状態と可観測量の両方の構造は、純粋状態の理想化したものより相当に複雑である。

ハイゼンベルクの不確定性原理は、ある種の可観測量に対応する作用素が互いに可換でなく、特定の形の交換子を与えるという主張として表される。


  1. ^ Marsden 1974, §2.8
  2. ^ この節における数学的な題材は、Dieudonné (1960), Hewitt & Stromberg (1965), Reed & Simon (1980), Rudin (1980) など、標準的な関数解析学の教科書を見れば載っている。
  3. ^ 第二引数に関して線型であると約束する場合もある。
  4. ^ Dieudonné 1960, §6.2
  5. ^ Dieudonné 1960
  6. ^ メビウスの後押しを受けたグラスマンの手によるところが大きい (Boyer & Merzbach 1991, pp. 584–586)。抽象線型空間の現代的にきちんとした公理的取り扱いは、1888年のペアノが最初である (Grattan-Guinness 2000, §5.2.2; O'Connor & Robertson 1996)。
  7. ^ ヒルベルト空間の詳しい歴史は Bourbaki 1987 に扱われている。
  8. ^ Schmidt 1908
  9. ^ Titchmarsh 1946, §IX.1
  10. ^ Lebesgue 1904。積分論の歴史の詳細は Bourbaki (1987)Saks (2005) にある。
  11. ^ Bourbaki 1987.
  12. ^ Dunford & Schwartz 1958, §IV.16
  13. ^ Fréchet (1907)Riesz (1907) の結果を併せて Dunford & Schwartz (1958, §IV.16) は「L2[0,1] 上の任意の線型汎関数は積分で表される」と書いている。「ヒルベルト空間の双対がもとの空間と同一視される」という一般な形の主張は Riesz (1934) で述べられている。
  14. ^ von Neumann 1929.
  15. ^ Kline 1972, p. 1092
  16. ^ Hilbert, Nordheim & von Neumann 1927.
  17. ^ a b Weyl 1931.
  18. ^ Prugovečki 1981, pp. 1–10.
  19. ^ a b von Neumann 1932
  20. ^ Halmos 1957, Section 42.
  21. ^ Hewitt & Stromberg 1965.
  22. ^ a b Bers, John & Schechter 1981.
  23. ^ Giusti 2003.
  24. ^ Stein 1970
  25. ^ 詳細は Warner (1983) に見つかる。
  26. ^ ハーディ空間の一般論は Duren (1970) を見よ。
  27. ^ Krantz 2002, §1.4
  28. ^ Krantz 2002, §1.5
  29. ^ Young 1988, Chapter 9.
  30. ^ フレドホルム核の固有値は 1/λ でこれは 0 に近づく。
  31. ^ この観点からの有限要素法の詳細が Brenner & Scott (2005) にある。
  32. ^ Reed & Simon 1980
  33. ^ この観点からのフーリエ級数の扱いは、例えば Rudin (1987)Folland (2009) を参照。
  34. ^ Halmos 1957, §5
  35. ^ Bachman, Narici & Beckenstein 2000
  36. ^ Stein & Weiss 1971, §IV.2.
  37. ^ Lancos 1988, pp. 212–213
  38. ^ Lanczos 1988, Equation 4-3.10
  39. ^ スペクトル法の古典的文献は Courant & Hilbert 1953。より今日的な取り扱いは Reed & Simon 1975 を参照。
  40. ^ Kac 1966
  41. ^ Dirac 1930
  42. ^ von Neumann 1955
  43. ^ Young 1988, p. 23.
  44. ^ Clarkson 1936.
  45. ^ Rudin 1987, Theorem 4.10
  46. ^ Dunford & Schwartz 1958, II.4.29
  47. ^ Rudin 1987, Theorem 4.11
  48. ^ Weidmann 1980, Theorem 4.8
  49. ^ Weidmann 1980, §4.5
  50. ^ Buttazzo, Giaquinta & Hildebrandt 1998, Theorem 5.17
  51. ^ Halmos 1982, Problem 52, 58
  52. ^ Rudin 1973
  53. ^ Trèves 1967, Chapter 18
  54. ^ See Prugovečki (1981), Reed & Simon (1980, Chapter VIII), Folland (1989).
  55. ^ Prugovečki 1981, III, §1.4
  56. ^ Dunford & Schwartz 1958, IV.4.17-18
  57. ^ Weidmann 1980, §3.4
  58. ^ Kadison & Ringrose 1983, Theorem 2.6.4
  59. ^ Dunford & Schwartz 1958, §IV.4.
  60. ^ 添字集合が有限の場合は例えば Halmos 1957, §5、無限の場合は Weidmann 1980, Theorem 3.6 を参照。
  61. ^ Levitan 2001。様々な文献(例えば Dunford & Schwartz (1958, §IV.4) など)ではこれを単に次元と呼ぶが、考えているヒルベルト空間が有限次元の場合を除けば、これは通常の線型空間の意味での次元(ハメル基底の濃度)と同じものではない。
  62. ^ Prugovečki 1981, I, §4.2
  63. ^ von Neumann (1955) はヒルベルト空間は可算ヒルベルト基底を持つものと定義したので、そのようなものは全て ℓ2 に等距同型である。量子力学の厳密な取り扱いにおいて殆どの場合この規約が用いられている(例えば Sobrino 1996, Appendix B を参照)。
  64. ^ a b c Streater & Wightman 1964, pp. 86–87
  65. ^ Young 1988, Theorem 15.3
  66. ^ Kakutani 1939
  67. ^ Lindenstrauss & Tzafriri 1971
  68. ^ Halmos 1957, §12
  69. ^ ヒルベルト空間におけるスペクトル論の一般的な説明が Riesz & Sz Nagy (1990) にある。C-環の言葉を用いたより高度な説明は Rudin (1973)Kadison & Ringrose (1997) を参照。
  70. ^ たとえば Riesz & Sz Nagy (1990, Chapter VI) や Weidmann 1980, Chapter 7 を参照。この結果は、積分核から生じる作用素の場合には、既に Schmidt (1907) で知られている。
  71. ^ Riesz & Sz Nagy 1990, §§107–108
  72. ^ Shubin 1987
  73. ^ Rudin 1973, Theorem 13.30.







ヒルベルト空間と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

ヒルベルト空間に関係した商品

辞書ショートカット

カテゴリ一覧

全て

ビジネス

業界用語

コンピュータ

電車

自動車・バイク

工学

建築・不動産

学問

文化

生活

ヘルスケア

趣味

スポーツ

生物

食品

人名

方言

辞書・百科事典

すべての辞書の索引

「ヒルベルト空間」の関連用語

ヒルベルト空間のお隣キーワード

   

英語⇒日本語
日本語⇒英語
   
検索ランキング

画像から探す

AGM-84

キュウリグサ

旭川聖台用水

雲仙天草国立公園

ケガキ分回し

8808号車

第五しょうどしま丸

Jetta





ヒルベルト空間のページの著作権
Weblio 辞書情報提供元は参加元一覧にて確認できます。

  
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのヒルベルト空間 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2015 Weblio RSS