ヒルベルト空間 ヒルベルト空間上の線型作用素

Weblio 辞書 > 同じ種類の言葉 > 人文 > 概念 > 概念 > ヒルベルト空間の解説 > ヒルベルト空間上の線型作用素 

ヒルベルト空間

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/02/16 13:38 UTC 版)

ヒルベルト空間上の線型作用素

有界作用素

ヒルベルト空間 H1 から別のヒルベルト空間 H2 への連続線型作用素 A: H1H2有界集合を有界集合へ写すという意味で「有界」である。逆に、有界な線型作用素は連続になる。二つの有界線型作用素の和および合成は、ふたたび有界かつ線型であり、このような有界線型作用素全体の成す空間には、作用素ノルムと呼ばれるノルム

が定義される。また、H2 の元 y に対して、x ∈ H1 を ⟨Ax, y⟩ へ写す写像は線型かつ連続である。リースの表現定理によれば、有界線型作用素は必ず H1 の適当なベクトル Ay に対する

の形で表現可能である。この定義から、もう一つの有界線型作用素(A随伴作用素A: H2 → H1 が定まる。このとき、A∗∗ = A であることが確かめられる。

H 上の有界線型作用素全体の成す集合 B(H) に、作用素の加法と合成および作用素ノルムと随伴作用素を考えたものは、作用素環の一種である C-環を成す。

B(H) の元 AA = A を満たすとき自己随伴作用素もしくはエルミート作用素と呼ばれる。エルミート作用素 A が ⟨Ax, x⟩ ≥ 0 を任意の x で満たすとき、A非負であるといい、A ≥ 0; で表す。さらに等号成立が x = 0 のときに限るならば Aであるという。また、

A − B ≥ 0 ならば A ≥ B

なるものと定義すれば、自己随伴作用素全体の成す集合に半順序 ≥ が導入できる。作用素 A が適当な B に対して A = BB なる形に書けるならば、A は非負であり、さらに B が可逆のとき A は正になる。また、非負作用素 A に対して

を満たす非負平方根 B が一意に定まるという意味で逆が成り立つ。これは、スペクトル論によって精緻化することができ、自己随伴作用素を「実」作用素と看做すことが有効であると分かる。B(H) の元 AAA = A A を満たすとき、A正規であるという。正規作用素は、自己随伴作用素と自己随伴作用素の虚数倍の和

に分解され、各項は互いに可換になる。正規作用素をその実部と虚部とに分けて考えることも有用である。

B(H) の元 U が可逆かつその逆作用素が U で与えられるとき、Uユニタリであるという。この条件は「U が全射かつ H の各元 x, y に対して ⟨Ux, Uy⟩ = ⟨x, y⟩ を満たすこと」とも言い換えられる。H 上のユニタリ作用素の全体は、合成に関して H の等距変換群と呼ばれるを成す。

B(H) の元がコンパクトであるとは、それが有界集合を相対コンパクト集合へ写すときに言う。同じことだが、有界作用素 T について、任意の有界列 {xk} に対して列 {Txk} が収束部分列を持つとき T はコンパクトである。多くの積分作用素はコンパクトであり、事実ヒルベルト=シュミット作用素として知られるコンパクト作用素のクラスが積分方程式論において特に重要な働きをする。フレドホルム作用素は恒等変換の定数倍の分だけコンパクト作用素とは違うけれども、余核が有限であるような作用素としても特徴付けられる。フレドホルム作用素の指数 (index) は

で定義される。この指数はホモトピー不変量であり、アティヤ・シンガーの指数定理を通じて微分幾何学で深い役割を果たす。

非有界作用素

ヒルベルト空間においては非有界作用素もある程度きれいに扱うことができ、量子力学にも重要な応用を持つ[54]。ヒルベルト空間 H 上の非有界作用素 T は、その定義域 D(T) が H の線型部分空間であるような線型作用素であるものとして定義される。定義域が H の稠密な部分集合となることもよくあり、そのような作用素 T密定義作用素と呼ばれる。

密定義非有界作用素の随伴は、本質的に有界作用素の場合と同じ方法で定義される。自己随伴非有界作用素は量子力学の数学的基礎において可観測量の役割を持つ。ヒルベルト空間 H = L2(R) 上の自己随伴非有界作用素の例としては、

  • 微分作用素の適当な拡張
    ただし、i は虚数単位、f は台がコンパクトな可微分関数。
  • x による掛け算作用素

などが挙げられる[55]。これらはそれぞれ、運動量位置の可観測量に対応する。この ABH の全域で定義されてはいないことに注意すべきである。A の場合は微分が存在しないものがあること、B の場合は x が掛けられた関数が自乗可積分とは限らないことがその理由である。何れの場合にも、引数にとり得る関数全体の成す集合は H の稠密な部分集合になる。


  1. ^ Marsden 1974, §2.8
  2. ^ この節における数学的な題材は、Dieudonné (1960), Hewitt & Stromberg (1965), Reed & Simon (1980), Rudin (1980) など、標準的な関数解析学の教科書を見れば載っている。
  3. ^ 第二引数に関して線型であると約束する場合もある。
  4. ^ Dieudonné 1960, §6.2
  5. ^ Dieudonné 1960
  6. ^ メビウスの後押しを受けたグラスマンの手によるところが大きい (Boyer & Merzbach 1991, pp. 584–586)。抽象線型空間の現代的にきちんとした公理的取り扱いは、1888年のペアノが最初である (Grattan-Guinness 2000, §5.2.2; O'Connor & Robertson 1996)。
  7. ^ ヒルベルト空間の詳しい歴史は Bourbaki 1987 に扱われている。
  8. ^ Schmidt 1908
  9. ^ Titchmarsh 1946, §IX.1
  10. ^ Lebesgue 1904。積分論の歴史の詳細は Bourbaki (1987)Saks (2005) にある。
  11. ^ Bourbaki 1987.
  12. ^ Dunford & Schwartz 1958, §IV.16
  13. ^ Fréchet (1907)Riesz (1907) の結果を併せて Dunford & Schwartz (1958, §IV.16) は「L2[0,1] 上の任意の線型汎関数は積分で表される」と書いている。「ヒルベルト空間の双対がもとの空間と同一視される」という一般な形の主張は Riesz (1934) で述べられている。
  14. ^ von Neumann 1929.
  15. ^ Kline 1972, p. 1092
  16. ^ Hilbert, Nordheim & von Neumann 1927.
  17. ^ a b Weyl 1931.
  18. ^ Prugovečki 1981, pp. 1–10.
  19. ^ a b von Neumann 1932
  20. ^ Halmos 1957, Section 42.
  21. ^ Hewitt & Stromberg 1965.
  22. ^ a b Bers, John & Schechter 1981.
  23. ^ Giusti 2003.
  24. ^ Stein 1970
  25. ^ 詳細は Warner (1983) に見つかる。
  26. ^ ハーディ空間の一般論は Duren (1970) を見よ。
  27. ^ Krantz 2002, §1.4
  28. ^ Krantz 2002, §1.5
  29. ^ Young 1988, Chapter 9.
  30. ^ フレドホルム核の固有値は 1/λ でこれは 0 に近づく。
  31. ^ この観点からの有限要素法の詳細が Brenner & Scott (2005) にある。
  32. ^ Reed & Simon 1980
  33. ^ この観点からのフーリエ級数の扱いは、例えば Rudin (1987)Folland (2009) を参照。
  34. ^ Halmos 1957, §5
  35. ^ Bachman, Narici & Beckenstein 2000
  36. ^ Stein & Weiss 1971, §IV.2.
  37. ^ Lancos 1988, pp. 212–213
  38. ^ Lanczos 1988, Equation 4-3.10
  39. ^ スペクトル法の古典的文献は Courant & Hilbert 1953。より今日的な取り扱いは Reed & Simon 1975 を参照。
  40. ^ Kac 1966
  41. ^ Dirac 1930
  42. ^ von Neumann 1955
  43. ^ Young 1988, p. 23.
  44. ^ Clarkson 1936.
  45. ^ Rudin 1987, Theorem 4.10
  46. ^ Dunford & Schwartz 1958, II.4.29
  47. ^ Rudin 1987, Theorem 4.11
  48. ^ Weidmann 1980, Theorem 4.8
  49. ^ Weidmann 1980, §4.5
  50. ^ Buttazzo, Giaquinta & Hildebrandt 1998, Theorem 5.17
  51. ^ Halmos 1982, Problem 52, 58
  52. ^ Rudin 1973
  53. ^ Trèves 1967, Chapter 18
  54. ^ See Prugovečki (1981), Reed & Simon (1980, Chapter VIII), Folland (1989).
  55. ^ Prugovečki 1981, III, §1.4
  56. ^ Dunford & Schwartz 1958, IV.4.17-18
  57. ^ Weidmann 1980, §3.4
  58. ^ Kadison & Ringrose 1983, Theorem 2.6.4
  59. ^ Dunford & Schwartz 1958, §IV.4.
  60. ^ 添字集合が有限の場合は例えば Halmos 1957, §5、無限の場合は Weidmann 1980, Theorem 3.6 を参照。
  61. ^ Levitan 2001。様々な文献(例えば Dunford & Schwartz (1958, §IV.4) など)ではこれを単に次元と呼ぶが、考えているヒルベルト空間が有限次元の場合を除けば、これは通常の線型空間の意味での次元(ハメル基底の濃度)と同じものではない。
  62. ^ Prugovečki 1981, I, §4.2
  63. ^ von Neumann (1955) はヒルベルト空間は可算ヒルベルト基底を持つものと定義したので、そのようなものは全て ℓ2 に等距同型である。量子力学の厳密な取り扱いにおいて殆どの場合この規約が用いられている(例えば Sobrino 1996, Appendix B を参照)。
  64. ^ a b c Streater & Wightman 1964, pp. 86–87
  65. ^ Young 1988, Theorem 15.3
  66. ^ Kakutani 1939
  67. ^ Lindenstrauss & Tzafriri 1971
  68. ^ Halmos 1957, §12
  69. ^ ヒルベルト空間におけるスペクトル論の一般的な説明が Riesz & Sz Nagy (1990) にある。C-環の言葉を用いたより高度な説明は Rudin (1973)Kadison & Ringrose (1997) を参照。
  70. ^ たとえば Riesz & Sz Nagy (1990, Chapter VI) や Weidmann 1980, Chapter 7 を参照。この結果は、積分核から生じる作用素の場合には、既に Schmidt (1907) で知られている。
  71. ^ Riesz & Sz Nagy 1990, §§107–108
  72. ^ Shubin 1987
  73. ^ Rudin 1973, Theorem 13.30.






ヒルベルト空間と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「ヒルベルト空間」の関連用語

ヒルベルト空間のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ヒルベルト空間のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのヒルベルト空間 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS