選択公理 選択公理の概要

選択公理

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/10/23 09:30 UTC 版)

定義

空集合を要素に持たない任意の集合族に対して、各要素(それ自体が集合である)から一つずつその要素を選び、新しい集合を作ることができる。あるいは同じことであるが、空でない集合の空でない任意の族 に対して写像 であって任意の に対し なるものが存在する、と写像を用いて言い換えることが出来る(ここで存在が要求される写像 f選択関数英語版という)。これは次の命題同値である。

{Aλ}λΛ をどれも空集合でないような集合の族とすると、それらの直積も空集合ではない。記号で書けば、

選択公理と等価な命題

以下の命題は全て選択公理と同値である。つまり、以下の命題のいずれかを仮定すると選択公理を証明することができるし、逆に選択公理を仮定すると以下の命題が全て証明できる。

整列可能定理
任意の集合は整列可能である。
ツォルンの補題
順序集合において、任意の全順序部分集合有界ならば、極大元が存在する。(実際の数学では、この形で選択公理が使われることも多い。)
テューキーの補題
有限性英語版を満たす空でない任意の集合族は包含関係に関する極大元を持つ。
比較可能定理
任意の集合の濃度は比較可能である。
直積定理
無限個の空集合でない集合の直積は空集合ではない。
右逆写像の存在
全射右逆写像を有する。
ケーニッヒ(Julius König)の定理
濃度の小さい集合の直和より、濃度の大きい集合の直積のほうが濃度が大きい。
ベクトル空間における基底の存在
全てのベクトル空間基底を持つ(1984年にen:Andreas Blassによって選択公理と同値であることが証明された。ただし、正則性公理が必要になる)。
チコノフの定理
コンパクト空間の任意個の積空間はコンパクトになる。
クルルの定理
単位元をもつ環は極大イデアルを持つ。

注釈

  1. ^ 1926年アドルフ・リンデンバウム英語版アルフレト・タルスキが示したが、証明は散逸した。同内容を1943年ヴァツワフ・シェルピニスキが再発見し1947年に出版した。

出典

  1. ^ Zermelo, Ernst (1904). "Beweis, dass jede Menge wohlgeordnet werden kann". Mathematische Annalen 59: 514-16.
  2. ^ 田中(1987)、36頁。
  3. ^ Jech, Thomas J. (2008-07-24), The Axiom of Choice, Dover Books on Mathematics (Paperback ed.), United States: Dover Publications Inc., ISBN 978-0-486-46624-8


「選択公理」の続きの解説一覧




選択公理と同じ種類の言葉


固有名詞の分類


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「選択公理」の関連用語

選択公理のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



選択公理のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの選択公理 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS