正の数と負の数 負の整数と負でない整数の形式的な構成

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 正の数と負の数の解説 > 負の整数と負でない整数の形式的な構成 

正の数と負の数

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/07/05 10:29 UTC 版)

負の整数と負でない整数の形式的な構成

有理数の場合と同様、整数を自然数の順序対 (a, b) (これは整数 ab を表していると考えることができる)を下に述べるようにして同一視したものとして定義することによって自然数の集合N整数の集合Zに拡張できる。これらの順序対に対する加法と乗法の拡張は以下の規則による。

(a, b) + (c, d) = (a + c, b + d)
(a, b) × (c, d) = (a × c + b × d, a × d + b × c)

ここで以下の規則により、これらの順序対に同値関係 ~ を定義する。

(a, b) ~ (c, d) となるのは a + d = b + c なる場合、およびこの場合に限る

この同値関係は上記の加法と乗法の定義と矛盾せず、ZN2の ~ による商集合として定義できる。すなわち2つの順序対 (a, b) と (c, d) が上記の意味で同値であるとき同一視する。

さらに以下の通り全順序Zに定義できる。

(a, b) ≤ (c, d) となるのは a + db + c となる場合、およびこの場合に限る

これにより加法の零元が (a, a) の形式で、(a, b) の加法の逆元が (b, a) の形式で、乗法の単位元が (a + 1, a) の形式で導かれ、減法の定義が以下のように導かれる。

(a, b) − (c, d) = (a + d, b + c).

負の数の起源

長い間、問題に対する負の解は「誤り」であると考えられていた。これは、負数を実世界で見付けることができなかったためである(例えば、負数のリンゴを持つことはできない)。その抽象概念は早ければ紀元前100年紀元前50年には認識されていた。中国の『九章算術』には図の面積を求める方法が含まれている。赤い算木で正の係数を、黒い算木で負の係数を示し、負の数がかかわる連立方程式を解くことができた。紀元後7世紀ごろに書かれた古代インドの『バクシャーリー写本[2]は"+"を負符号として使い、負の数による計算を行っていた。これらが現在知られている最古の負の数の使用である。

プトレマイオス朝エジプトではディオファントス3世紀に『算術』で 4x + 20 = 0 (解は負となる)と等価な方程式に言及し、この方程式はばかげていると言っており、古代地中海世界に負数の概念がなかったことを示している。

7世紀の間に、負数はインドで負債を表すために使われていた。インドの数学者ブラーマグプタは『ブラーフマスプタ・シッダーンタ』(628年)において、今日も使われている一般化された形式の解の公式を作るために、負数を使うことについて論じている。彼は二次方程式の負の解を発見し、負数とが関わる演算に関する規則も与えている。彼は正数を「財産」、零を「0 (cipher)」、負の数を「借金」と呼んだ[3][4]12世紀のインドで、バースカラ2世も二次方程式に負の根を与えていたが、問題の文脈では不適切なものとして負の根を拒絶している。

8世紀以降、イスラム世界ブラーマグプタの著書のアラビア語訳から負の数を学び、紀元1000年頃までには、アラブの数学者は負債に負の数を使うことを理解していた。

負の数の知識は、最終的にアラビア語とインド語の著書のラテン語訳を通してヨーロッパに到達した。

しかし、ヨーロッパの数学者はそのほとんどが、17世紀まで負数の概念に抵抗を見せた。ただしフィボナッチは、『算盤の書』(1202年)の第13章で負数を負債と解釈し、後には『精華』で損失と解釈して金融問題に負の解を認めた。同時に、中国人は右端のゼロでない桁に斜線を引くことによって負数を表した。ヨーロッパ人の著書で負数が使われたのは、15世紀中のシュケによるものが最初であった。彼は負数を指数として使ったが、「馬鹿げた数」であると呼んだ。

イギリスの数学者フランシス・マセレス[2]1759年、負数は存在しないという結論に達した[5]

負数は現代まで十分に理解されていなかった。つい18世紀まで、スイスの数学者レオンハルト・オイラーは負数が無限大より大きいと信じており(この見解はジョン・ウォリスと共通である)、方程式が返すあらゆる負の解を意味がないものとして無視することが普通だった[6]。負数が無限大より大きいという論拠は、 の商と、x が正の側から x = 0 の点に近づき、交差した時何が起きるかの考察によって生じている。

一般化

正の行列

正行列
行列Aについて、A負でないということを、Aのすべての成分が負でない、というふうに定めることができる。このとき、実行列のうちには正とも負とも言えないものもあることになる。また、行列Aについて、Aの全ての正方部分行列の行列式が負でないとき、Aのことを完全に非負(行列理論)あるいは、完全に正(コンピュータ科学者)と呼ぶことがある。
正定値行列
一方で、線形代数学的な観点から、実対称行列やより一般に複素エルミート行列について、上とは異なった正負の概念がしばしば用いられる。エルミート行列Aは、その固有値の全てが負でないときに、負でない(あるいは単に、正である)とよばれる。Aが負でないということはある行列BについてAB*.Bと書けることと同値になる(行列の定値性も参照)。無限次元の場合として、函数解析学における正作用素の概念が対応する。

正錐

抽象代数学の言葉では、正の数の全体 P は実数全体 正錐英語版と呼ばれる対象を成す。これにより は加法に関して順序群、加法と乗法に関して順序体と呼ばれる構造を持ち、また逆に、順序群や順序体としての の正錐 P が与えられれば「正の数とは P の任意の元のことである」と述べることができる。

xy-平面 2第一象限英語版xyz-空間 2x > 0, y > 0, z > 0 なる八分象限英語版 などが順序線型空間としての正錐の例であり、この構造に「錐」の名称がつけられている理由をみることができる。

これらのような順序構造において、正錐はそれぞれの付加構造によって記述できる良い性質を様々に持つ。

函数解析学における正作用素全体の成す凸錐もまたそのような例であり、より抽象的にバナッハ環C*-環における正の元英語版などが考察の対象となる。


  1. ^ 『相対論の式を導いてみよう、そして、人に話そう』(小笠英志、ベレ出版、ISBN 978-4860642679)の PP.121-127にマイナス×マイナスがプラスになることの小学生も納得できる説明が書いてある。
  2. ^ Hayashi, Takao (2005), "Indian Mathematics", in Flood, Gavin, The Blackwell Companion to Hinduism, Oxford: Basil Blackwell, 616 pages, pp. 360-375, ISBN 978-1-4051-3251-0.
  3. ^ Colva Roney-Dougal, Lecturer in Pure Mathematics at the University of St Andrews, stated this on the BBC Radio 4 "In Our Time", on Negative Numbers, 9 March 2006.
  4. ^ Knowledge Transfer and Perceptions of the Passage of Time, ICEE-2002 Keynote Address by Colin Adamson-Macedo. [1]
  5. ^ Maseres, Francis, 1731–1824. A dissertation on the use of the negative sign in algebra, 1758.
  6. ^ Alberto A. Martinez, Negative Math: How Mathematical Rules Can Be Positively Bent, Princeton University Press, 2006; おもに1600年代から1900年代前半にかけての、負数に関する論争の歴史。


「正の数と負の数」の続きの解説一覧


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「正の数と負の数」の関連用語

正の数と負の数のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



正の数と負の数のページの著作権
Weblio 辞書情報提供元は参加元一覧にて確認できます。

  
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの正の数と負の数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2020 Weblio RSS