単純群
代数的構造 → 群論 群論 |
---|
![]() |
数学において、単純群 (たんじゅんぐん、英: simple group) とは、自明でない正規部分群 (それ自身と自明群 (単位群 {e}) 以外の正規部分群) を持たず、またそれ自身も自明群ではない群である。単純群は自明でない正規部分群を持たないので当然直既約群であるが、直既約群は必ずしも単純群ではない (下の例参照)。
群に主組成列が存在すれば、有限個の直既約群の直積に一意的に分解される (クルル・レマク・シュミットの定理)。しかし、上記の理由により、必ずしも有限個の単純群の直積に分解されるとは限らない。もし、群が有限個の単純群の直積に分解可能であれば、その群は完全可約群または半単純群であるという。また、その場合に限って、主組成列の長さと直積の成分である単純群の個数は一致する[1]。
例
有限単純群
3を法とした同値類(合同算術を参照)によってできる巡回群 G = Z/3Z は単純群である。H をこの群の部分群とすると、その位数(要素の数)は G の位数(3)の約数である必要がある。3は素数なので、約数は1と3のみである。よって H は G と一致するか、あるいは自明な群である。一方で、群 G = Z/12Z は単純群ではない。それぞれ0,4,8の法12における同値類を要素としてもつ集合Hは位数3の部分群であり、アーベル群の任意の部分群は正規部分群であるため、 H は正規部分群である。同様に、整数の加法群 Z は単純群ではない:偶数全体の集合は自明でない真の部分群であり、したがって正規部分群である。[2]
同じような考察を任意のアーベル群に対して行うと、単純なアーベル群は素数位数の巡回群のみであることがわかる。非アーベル単純群に対する分類はずっと難解である。最小の非アーベル単純群は位数60の交代群 A5であり、任意の位数60の単純群は A5に同型である。[3]二番目に小さい非アーベル単純群は位数168の射影特殊線型群PSL(2,7)であり、任意の位数168の単純群はPSL(2,7)に同型であることが証明できる。[4][5]
無限単純群
無限交代群
この項目は、抽象代数学に関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めています(プロジェクト:数学/Portal:数学)。
- 単純群のページへのリンク