逆三角関数とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > デジタル大辞泉 > 逆三角関数の意味・解説 

ぎゃく‐さんかくかんすう〔‐サンカククワンスウ〕【逆三角関数】

読み方:ぎゃくさんかくかんすう

三角関数逆関数例えば、正弦関係ysinx逆関数sinyxで、これをysin−1xまたは、yarcsinxと書きアークサインxと読む。


逆三角関数

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/05/01 07:26 UTC 版)

数学において、逆三角関数(ぎゃくさんかくかんすう、逆三角函数: inverse trigonometric function、時折 cyclometric function[1])は(定義域を適切に制限した)三角関数逆関数である。具体的には、それらは正弦 (sine)、余弦 (cosine)、正接 (tangent)、余接 (cotangent)、正割 (secant)、余割 (cosecant) 関数の逆関数である。これらは三角関数値から角度を得るために使われる。逆三角関数は工学航法物理学幾何学において広く使われる。

表記

逆三角関数の表記はたくさんある。しばしば sin−1 (x), cos−1 (x), tan−1 (x) などの表記が使われるが、この慣習はよく使われる sin2 (x) といった、写像の合成ではなく冪乗を意味する表記と混同し、それゆえ合成的逆と乗法逆元との混乱を起こす可能性がある。三角関数には各逆数に名称が付されており、(cos x)−1 = sec x といった事実により混乱は幾分改善される。著者によっては別の慣習表記もあり[2]Sin−1 (x), Cos−1 (x) などのように、大文字の英語版最初の文字を −1 の右上添え字とともに用いるという表記がある。これは sin−1 (x), cos−1 (x) などによって表現されるべき乗法逆元との混乱を避ける。一方、語頭の大文字を主値を取ることを意味するために使う著者もいる[3]。また別の慣習は接頭辞に arc- を用いることであり、右上の −1 の添え字の混乱は完全に解消される。その際の表記は arcsin (x), arccos (x), arctan (x), arccot (x), arcsec (x), arccsc (x) となる。本記事では全体的にこの慣習を表記に用いる。コンピュータ言語では、逆三角関数の表記は通常 asin, acos, atan が使われている。

歴史

接頭辞 "arc" の起源は、弧度法に由来する。例えば、「余弦が x となる角度」は、単位円において、「余弦が x となる (arc)」と同義である[4]

逆正接函数の数表は実用上の要請から、すでにクラウディオス・プトレマイオスによって作成されていたという[5]

基本的な性質

主値

6つの三角関数はいずれも単射でないから、多価関数である。逆関数を考えるには、変域を制限する。それゆえ逆関数の値域はもとの関数の定義域の真の部分集合である。

例えば、平方根関数 y = xy2 = x から定義できるのと同様に、関数 y = arcsin(x)sin(y) = x であるように定義される。sin y = x となる数 y は無数にある;例えば 0 = sin 0 = sin π = sin 2π = … となっている。返す値を1つだけにするために、関数はその主枝英語版に制限する。この制限の上で、定義域内の各 x に対して表現 arcsin(x) はその主値と呼ばれるただ1つの値だけを返す。これらの性質はすべての逆三角関数について同様に当てはまる。

主逆関数は以下の表にリストされる。

名前 通常の表記 定義 実数を与える x の定義域 通常の主値の終域
ラジアン
通常の主値の終域
逆正弦
(arcsine)
y = arcsin x x = sin y −1 ≤ x ≤ 1 π/2yπ/2 −90° ≤ y ≤ 90°
逆余弦
(arccosine)
y = arccos x x = cos y −1 ≤ x ≤ 1 0 ≤ y ≤ π 0° ≤ y ≤ 180°
逆正接
(arctangent)
y = arctan x x = tan y すべての実数 π/2 < y < π/2 −90° < y < 90°
逆余接
(arccotangent)
y = arccot x x = cot y すべての実数 0 < y < π 0° < y < 180°
逆正割
(arcsecant)
y = arcsec x x = sec y x ≤ −1 or 1 ≤ x 0 ≤ y < π/2 or π/2 < y ≤ π 0° ≤ y < 90° or 90° < y ≤ 180°
逆余割
(arccosecant)
y = arccsc x x = csc y x ≤ −1 or 1 ≤ x π/2y < 0 or 0 < yπ/2 −90° ≤ y < 0° or 0° < y ≤ 90°

(注意:逆正割関数の終域を (0 ≤ y < π/2 or π ≤ y < 3/2π) と定義する著者もいる、なぜならば正接関数がこの定義域上非負だからである。これによっていくつかの計算がより首尾一貫したものになる。例えば、この終域を用いて、tan(arcsec(x)) = x2 − 1 と表せる。一方で終域 (0 ≤ y < π/2 or π/2 < y ≤ π) を用いる場合、tan(arcsec(x)) = ± x2 − 1 と書かねばならない、なぜならば正接関数は 0 ≤ y < π/2 上は負でないが π/2 < y ≤ π 上は正でないからである。類似の理由のため、同じ著者は逆余割関数の終域を (−π < y ≤ −π/2 or 0 < yπ/2) と定義する。)

x複素数であることを許す場合、y の終域はその実部にのみ適用する。

三角関数と逆三角関数の関係

逆三角関数の三角関数を以下の表に示す。表にある関係を導くには、単純には幾何学的な考察から、直角三角形の一辺の長さを 1 とし、他方の辺の長さを 0 ≤ x ≤ 1 にとってピタゴラスの定理と三角比の定義を適用すればよい(表中の図を参照)。このような幾何学的な手段を用いない、純代数学的導出はより長いものとなる。

逆三角関数の間の関係

平面上の直交座標系で図示された arcsin(x)()と arccos(x)()の通常の定義における主値。
平面上の直交座標系で図示された arctan(x)()と arccot(x)()の通常の定義における主値。
平面上の直交座標系で図示された arcsec(x)()と arccsc(x)()の主値。

余角:

直角三角形

逆三角関数は、直角三角形において、辺の長さから鋭角を求めるときに有用である。例えば sin の直角三角形による定義を思い出すと


逆三角関数

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/07/26 16:11 UTC 版)

三角関数」の記事における「逆三角関数」の解説

詳細は「逆三角関数」を参照 三角関数定義域適当に制限したものの逆関数を逆三角関数(ぎゃくさんかくかんすう、英: inverse trigonometric function)と呼ぶ。逆三角関数は逆関数の記法に則り、元の関数記号に −1 を右肩付して表す。たとえば逆正弦関数ぎゃくせいげんかんすう、英: inverse sine; インバース・サイン)は sin−1x などと表す。arcsin, arccos, arctan などの記法もよく用いられる数値計算などにおいては、これらの逆関数はさらに asin, acos, atan などと書き表される。 x = sin ⁡ y ⟺ y = sin − 1 ⁡ x x = cos ⁡ y ⟺ y = cos − 1 ⁡ x x = tan ⁡ y ⟺ y = tan − 1 ⁡ x x = cot ⁡ y ⟺ y = cot − 1 ⁡ x x = sec ⁡ y ⟺ y = sec − 1 ⁡ x x = csc ⁡ y ⟺ y = csc − 1 ⁡ x {\displaystyle {\begin{aligned}x=\sin y&\iff y=\sin ^{-1}x\\x=\cos y&\iff y=\cos ^{-1}x\\x=\tan y&\iff y=\tan ^{-1}x\\x=\cot y&\iff y=\cot ^{-1}x\\x=\sec y&\iff y=\sec ^{-1}x\\x=\csc y&\iff y=\csc ^{-1}x\end{aligned}}} である。逆関数逆数ではないので注意したい逆数との混乱避けるために、逆正弦関数 sin−1x を arcsinx と書流儀もある。一般に周期関数逆関数多価関数になるので、通常は逆三角関数を一価連続なる制限して考えることが多い。たとえば、便宜的に主値呼ばれるを − π 2 ≤ sin − 1 ⁡ x ≤ π 2 0cos − 1 ⁡ x ≤ π − π 2 < tan − 1 ⁡ x < π 2 {\displaystyle {\begin{aligned}-{\frac {\pi }{2}}&\leq \sin ^{-1}x\leq {\frac {\pi }{2}}\\0&\leq \cos ^{-1}x\leq \pi \\-{\frac {\pi }{2}}&<\tan ^{-1}x<{\frac {\pi }{2}}\end{aligned}}} のように選ぶことが多い。またこのとき、制限があることを強調するために、Sin−1x, Arcsin x のように頭文字大文字にした表記がよく用いられる

※この「逆三角関数」の解説は、「三角関数」の解説の一部です。
「逆三角関数」を含む「三角関数」の記事については、「三角関数」の概要を参照ください。

ウィキペディア小見出し辞書の「逆三角関数」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ

「逆三角関数」の例文・使い方・用例・文例

  • 逆三角関数という関数
Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「逆三角関数」の関連用語

逆三角関数のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



逆三角関数のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
デジタル大辞泉デジタル大辞泉
(C)Shogakukan Inc.
株式会社 小学館
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの逆三角関数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの三角関数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS