計算の形式モデル
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/10/17 08:19 UTC 版)
計算可能性理論の中心課題に答えるために、「コンピュータとは何か」を形式的に定義する必要がある。利用可能な計算モデルはいくつか存在する。以下に代表例を挙げる。 決定性有限状態機械 決定性有限オートマトン(DFA)、あるいは単に有限状態機械とも呼ぶ。単純な計算モデルである。現在、実際に使われているコンピュータは、有限状態機械としてモデル化できる。この機械は状態の集合を持ち、入力列によって働く状態遷移の集合を持つ。一部の状態は受容状態と呼ばれる。入力列は一度に1文字ずつ機械に入力され、現在状態から状態遷移先への遷移条件と入力が比較され、マッチングするものがあればその状態が新たな状態となる。入力列が終了したとき機械が受容状態にあれば、全入力列が受容されたということができる。 プッシュダウン・オートマトン 有限状態機械に似ているが、任意のサイズに成長可能な実行スタックを利用可能である点が異なる。状態遷移の際に記号をスタックに積むかスタックから記号を除くかを指定できる。 チューリングマシン これも有限状態機械に似ているが、入力が「テープ」の形式になっていて、読むだけでなく書くこともでき、テープを送ったり巻き戻したりして読み書きの位置を決めることができる。テープのサイズは任意である。チューリングマシンは時間さえかければ、かなり複雑な問題も解くことができる。このモデルは計算機科学では最も重要な計算モデルであり、資源の限界がない計算をシミュレートしたものである。
※この「計算の形式モデル」の解説は、「計算可能性理論」の解説の一部です。
「計算の形式モデル」を含む「計算可能性理論」の記事については、「計算可能性理論」の概要を参照ください。
- 計算の形式モデルのページへのリンク