固相転移
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/11/19 01:18 UTC 版)
ポリマーは大きな内部自由度を持つため、安定な固相状態を複数持つ場合がある。殆どの場合、固相から固相への相転移は一次相転移であり、温度変化による二つの固相間のギブス自由エネルギーにおける大小関係の逆転が相転移を引き起こす。逆転の際に熱流束の減少/増加ピークは生じるため、相転移をDSCにより観測することができる。 n-アルカンはポリマーの固相転移のモデル系である。n-アルカンの分子鎖の対称性は1分子当たりの炭素数によって異なる。炭素数が奇数の場合は斜方晶型(A相)、偶数の場合は単斜晶型が室温での安定な結晶構造である。A相では高分子鎖は平面ジグザグ構造をとり、斜方晶型の格子上に配列する。B層では分子軸周りの180度のジャンプ運動が励起され、分子鎖の方位に関する長距離秩序は失われる。C層になると、分子鎖方向の並進運動が励起され、平均の結晶型が斜方晶型でなくなる。更に、炭素数が9-35の範囲では融点直下に、回転相(D相)と呼ばれる固相が存在する。D相では分子軸周りの回転運動が励起され、平面ジグザグ構造は維持されなくなる。分子軸周りの対称性のため、D相では六方晶的な構造を取る。D相は分子鎖の乱れを大いに含んでいる。このため、D相は結晶よりも液晶に近いとみなされており、D相への転移を前駆融解と解釈する考えもある。以上のように、n-アルカンは最大で四つの固相を持つ。n-アルカンを室温から昇温すると、分子鎖の様々な運動が徐々に励起されることに応じて、A→B→C→Dの順に固相転移が生じる。 ポリエチレンでは、n-アルカンのD相に相当する状態は常圧下で観測されない。しかし、高温高圧の融点直下で、常圧相の斜方晶(A相)から高圧相の六方晶(D相)へ相転移する。分子鎖構造の乱れが熱により励起されることが相転移に関わっていると考えられている。ポリエチレンの高圧相は非常に乱れており、n-アルカンの回転相と同様に結晶相よりも液晶相に近い。このように、低温相からの昇温過程において、六方晶のような対称性の高い高温相へ転移することはポリマー結晶では一般的である。 ナイロン66の結晶において、ブリル転移という特徴的な固相転移が起こる。ブリル転移とは、三斜晶または単斜晶の低温相からの、三斜晶の構造を持つ高温相(疑六方晶)への転移である。結晶の秩序度が高い場合ではブリル転移は一次相転移であるが、乱れを多く含む場合には連続的な構造変化として観測される。また、乱れを多く含みほぼ大気圧下で 192 °C に臨界点を持つナイロン66結晶ではブリル転移は二次相転移である。ナイロン以外に二次相転移を起こす可能性があるポリマーとして、ビニリデン/三フッ化エチレン共重合体結晶がある。
※この「固相転移」の解説は、「重合体」の解説の一部です。
「固相転移」を含む「重合体」の記事については、「重合体」の概要を参照ください。
- 固相転移のページへのリンク