切断および局所自由層
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/03/21 04:18 UTC 版)
ベクトル束 π: E → X と X の開集合 U が与えられたとき、π の U 上の切断、断面 (section) を考えることができる。切断とは、π ∘ s = idU を満たす連続写像 s: U → E のことであり、これは本質的には U の各点で、それに付随するベクトル空間のベクトルを連続的に対応させることを意味する。例えば、可微分多様体の接束の切断とは、その多様体上のベクトル場に他ならない。 F(U) を、U 上の切断全体の集合とする。F(U) は常に、少なくとも零切断 (zero section)と呼ばれる一つの要素を含む。これは、任意の要素 x ∈ U をベクトル空間 π−1({x}) の零ベクトルに写像する切断 s である。各点における切断の加法とスカラー倍により、F(U) はそれ自体が実ベクトル空間になる。これらベクトル空間の(開集合 U に関する)系は、X 上のベクトル空間の層をなす。 s が F(U) に属する切断で α: U → R が連続写像のとき、点ごとのスカラー乗法で定義される αs は再び F(U) に属する。したがって、F(U) を U 上で定義された実数値連続関数環の上の加群と見なすことができる。さらに、X 上の実数値連続関数全体の成す構造層を OX と書くと、F は OX 加群全体の層になる。 どんな OX 加群の層でも、ベクトル束からこの方法で得られるというわけではなく、局所自由であるものに限られる。実際にこの構成法では、局所的には射影 U × Rk → U の切断を求めることになるが、それはちょうど連続写像 U → Rk であって、連続関数 U → R の k 組として表されるからである。 さらに言えば、X 上の実ベクトル束の圏は、局所自由かつ有限生成な OX 加群の層の圏に圏同値である。したがって、X 上の実ベクトル束の圏は OX 加群の層の圏に含まれていると考えることができる。後者はアーベル圏であり、それによってベクトル束の射の核や余核をその中でならば計算することができる。 n-階ベクトル束が自明であるための必要十分条件は、それが n 個の線型独立な大域切断を持つことであることに注意。
※この「切断および局所自由層」の解説は、「ベクトル束」の解説の一部です。
「切断および局所自由層」を含む「ベクトル束」の記事については、「ベクトル束」の概要を参照ください。
- 切断および局所自由層のページへのリンク