リスクの測定に関する新しい理論
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/06 08:26 UTC 版)
「ダニエル・ベルヌーイ」の記事における「リスクの測定に関する新しい理論」の解説
自然科学の分野以外で特記すべきは、経済理論へのベルヌーイの先駆的な貢献である。1738年に、「リスクの測定に関する新しい理論」というラテン語で書かれた論文が、学術雑誌『ペテルブルク帝国アカデミー論集』に掲載された。 歪みのないコインを表が出るまで投げ続ける、というゲームを想定する。表が初めて出るときが第1回目なら2ルーブリ、第2回目ならば4ルーブリ、第3回目ならば8ルーブリ…というふうに賞金は幾何級数的に増大する、と仮定せよ。ただし、ゲーム参加料は100万ルーブリである。果たしてこのゲームに参加することで、利益を得られると期待できるだろうか。ここで、通常の感覚ならば、ゲームには参加しないだろう。しかし、利得の期待値は無限大となり、参加料の100万ルーブリを上回る。したがって「ゲームに参加すべし」という結論が出てしまう。これをサンクトペテルブルクの逆説と呼ぶ。 ベルヌーイはこのパラドックスを、「ごくわずかな富の増加から得られる満足度(効用)はそれまで保有していた財の数量に反比例する」という、現在では〈限界効用逓減の法則〉と呼ばれる論理で解決した。その発想は、同じ1ルーブリ獲得といっても、所得がゼロの状態からの獲得と、所得10ルーブリからのそれでは、その効用(価値)は同じではない、という点から始まる。上述のコイン投げゲームにおいて、人が「利益」として勘定に入れるべきなのは、各賞金額の期待値を総計することではなくて、各賞金額から得られる「効用」の期待値を総計することである。すると、もし限界効用の低下が著しい場合には、ゲーム参加の期待効用の総量が有限値となり、参加料から獲得可能な効用量を下回るだろう。 かかった費用ではなく限界効用に重きをおくこの考え方は、100年以上たってジェヴォンズによってベルヌーイとは別に確立された。期待効用理論が完全に復権するのは、200年後に出版された数学者フォン・ノイマンと経済学者モルゲンシュテルンの大著『ゲーム理論と経済行動』(1944年)においてである。
※この「リスクの測定に関する新しい理論」の解説は、「ダニエル・ベルヌーイ」の解説の一部です。
「リスクの測定に関する新しい理論」を含む「ダニエル・ベルヌーイ」の記事については、「ダニエル・ベルヌーイ」の概要を参照ください。
- リスクの測定に関する新しい理論のページへのリンク