フェルマーの最終定理


フェルマーの最終定理(フェルマーのさいしゅうていり、英: Fermat's Last Theorem)とは、3 以上の自然数 n について、xn + yn = zn となる自然数の組 (x, y, z) は存在しない、という定理である[注釈 1]。
フェルマーの大定理(フェルマーのだいていり)とも呼ばれる。ピエール・ド・フェルマーが「真に驚くべき証明を見つけた」と書き残したと伝えられ、長らく証明も反証もなされなかったことからフェルマー予想とも称されたが、フェルマーの死後330年経った1995年にアンドリュー・ワイルズによって完全に証明され、ワイルズの定理またはフェルマー・ワイルズの定理とも呼ばれるようになった[1]。
概要
17世紀、フランスの裁判官ピエール・ド・フェルマー(1607年 - 1665年)は、古代ギリシアの数学者ディオファントスの著作『算術』を読み、本文中の記述に関連した着想を得ると、それを余白に書き残しておくという習慣を持っていた。それらは数学的な定理あるいは予想であったが、限られた余白への書き込みであるため、また充分な余白がある場合にも、フェルマーはその証明をしばしば省略した(たとえば、フェルマーの小定理として知られる書き込みを実際に証明したのは、ゴットフリート・ライプニッツである)。
48か所に及ぶこれらの書き込みが知られるようになったのは、フェルマーの没後の1670年に彼の息子サミュエルによってフェルマーの書き込み入りの『算術』が刊行されてからである[注釈 2][注釈 3]。
第2巻第8問「平方数を2つの平方数の和に表せ[注釈 4]」の欄外余白に、フェルマーは
Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duos eiusdem nominis fas est dividere cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.[4] | 立方数を2つの立方数の和に分けることはできない。4乗数を2つの4乗数の和に分けることはできない。一般に、冪が2より大きいとき、その冪乗数を2つの冪乗数の和に分けることはできない。この定理に関して、私は真に驚くべき証明を見つけたが、この余白はそれを書くには狭すぎる。 |
とラテン語で書き残した。彼の残した他の書き込みは、全て真か偽かの決着がつけられた(証明された・反例が挙げられた)が、最後まで残ったこの予想だけは誰も証明することも反例を挙げることもできなかった。そのため「フェルマーの最終定理」[注釈 5]と呼ばれるようになった。内容自体は三平方の定理程度の知識があれば理解できるものであったため、プロ、アマチュアを問わず多くの者がその証明に挑んだ。見事に証明した者には賞金を与えるという話も出てきて、フェルマーの最終定理の存在が一般にも徐々に知られるようになっていった。
個別研究の時代
n が具体的な値を取るいくつかの場合についてはさまざまな証明が与えられた。
n = 4:フェルマー

フェルマー自身の証明は、ディオファントスの『算術』に記された45番目の書き込みに含まれている[5]。フェルマーは以下の手法、法則、定理を使い証明した[6]。
- 指数法則に従って x4 + y4 = z4 を (x2)2 + (y2)2 = (z2)2 に変換し、ピタゴラス数の性質を利用する。
- x, y, z は互いに素であるとする。
- 定理「互いに素である2つの数の積が平方数であるならば、2つの数もそれぞれ平方数である。」
- x を偶数、z, y を奇数とする。
- 偶数と奇数の性質
- 無限降下法
フェルマーによる証明は後にレオンハルト・オイラーによって簡潔な形で直される[7]。
n = 4 の場合がフェルマーによって証明された後は、残りの証明は n が奇素数の場合のみを考えればよいことになる[8]。なぜなら、n が奇数の場合は、n = pq…r のように奇素数の積で表すことができて、奇素数 p のときに成り立てば、(xq…r)p + (yq…r)p = (zq…r)p より n = pq…r のときも成り立つことが示される。さらに、n が偶数の場合は、4で割った余りが0または2となるので、余りが0すなわち n = 4m の場合は (xm)4 + (ym)4 = (zm)4 より成り立ち、余りが2すなわち n = 4m+2 の場合は n = 2(2m+1) より n が奇数の因数 2m+1 を持つことになり 2m+1 を素因数分解したときの奇素数について成り立つからである。
n = 3:オイラー
レオンハルト・オイラーは1753年にクリスティアン・ゴールドバッハへ宛てた書簡の中で n = 3 の場合の証明法について言及し[9]、1760年に純初等的で完全な証明を得た[10]。さらに、1770年に刊行した著書『代数学』(Vollständige Anleitung zur Algebra)ではその証明とは異なり(複素数を用いる)エレガントながら不完全な証明を公開した。ただし、この2番目の証明は虚数のレベル、具体的には a+b√−3 の形の数まで因数分解を行ったもので、現代の言葉で言えば、整数環 プリンストン大学にいたイギリス生まれの数学者アンドリュー・ワイルズは岩澤主予想 (Iwasawa main conjecture) を解決するなどして、元々数論の研究者として有名な人物であった。彼は10歳の時に触れたフェルマー予想に憧れて数学者となったが、数学者となってからは自身の生活も危惧して子供時代の夢は封印し、フェルマー予想のような孤立した骨董品ではなく主流数学の研究に勤しんでいた。ところが1986年、ケン・リベットがフライ・セール予想を解決したことにより、フェルマー予想に挑むことは、主流数学の一大予想に挑むことと同義になってしまった。かつての憧れだったものが、今や骨董品どころか解かずには済まされない中心課題の一つになったのである。ワイルズはこのことに強い衝撃を受け発奮、正にフェルマー予想の解決を目的として、他の研究を全て止めて谷山–志村予想に取り組むこととなった。ただしこの際、彼は人々の耳目を集め過ぎることを懸念して、表面的には未発表の研究成果を小出しにすることで偽装し、谷山–志村予想の研究を秘密裏に行うこととした。
ワイルズは、代数幾何学(特に楕円曲線と群スキーム)や数論(モジュラー形式やガロア表現、ヘッケ環、岩澤理論)の高度な道具立てを用いて証明を試みたが、類数公式の導出に当たり岩澤理論を用いる方向では行き詰まってしまった。そこでコリヴァギン=フラッハ法(ヴィクター・コリヴァギンとマティアス・フラッハの方法)に基づくよう方針転換し、最後のレビュー段階で自分のコリヴァギン=フラッハ法の運用に誤りがないか確認を依頼するためプリンストンの同僚ニック・カッツに「谷山-志村が証明できそうだ」と打ち明け、助けを得るまで、細部に至るまでの証明を完璧な秘密のうちにほぼすべて独力で成し遂げた(ここまでで7年が経過していた)。彼がケンブリッジ大学で1993年の6月21日から23日にかけて3つの講義からなるコースで証明を発表したとき、聴衆は証明に使われた数々の発想と構成に驚愕した。
ただし、その後の査読において、ワイルズの証明には1箇所致命的な誤りがあることが判明した。この修正は難航したが、ワイルズは彼の教え子リチャード・テイラーの助けを借りつつ、約1年後の1994年9月、障害を回避することに成功した。ワイルズはその瞬間を「研究を始めて以来、最も大事な一瞬」と語っている。1994年10月に新しい証明を発表。1995年のAnnals of Mathematics誌において出版し、その証明は、1995年2月13日に誤りがないことが確認され[23]、360年に渡る歴史に決着を付けた。
1998年のアニメ『ザ・シンプソンズ』シーズン10第2話「発明は反省のパパ」にて、ホーマー・シンプソンが次の反例であるように見える等式を書く場面がある[27];
(注:もちろんこれは指数nが4の倍数である時点で、フェルマー自身が証明したように解ではありえない)。
証明した論文
エピソード
フィクション
偽の反例
- ABC予想 - 予想が正しかった場合、n が 6 以上の場合についての証明を与える、とよく誤解される。正しくは「質が2以上であるabc-tripleは存在しない」というABC予想に関連するまた別の予想からの帰結である。
- オイラー予想 - フェルマーの最終定理を発展させた数学的予想。反例が示され、否定的に証明されている。
- 佐藤・テイト予想
- 数学上の未解決問題
- フェルマー=カタラン予想
外部リンク
- Weisstein, Eric W. "Fermat's Last Theorem". mathworld.wolfram.com (英語).