タイプII移動
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/02 05:55 UTC 版)
ガス円盤にギャップを形成するほどに大きく成長した惑星は、タイプII移動 (英: Type II migration) と呼ばれる惑星移動を起こす。タイプII軌道移動やタイプII惑星移動とも呼ばれる。円盤のガスに擾乱を与える惑星の質量が十分に大きくなると、惑星がガスに及ぼす潮汐トルクは角運動量を惑星の軌道の外側にあるガスに輸送し、また軌道の内側ではその逆が起きるため、結果として惑星の軌道の周囲からガスが排除される。タイプI移動が起きる段階では粘性トルクがこの過程に効率的に対抗して働くため、ガスが再供給されガス密度分布の急激な傾きは滑らかにされる。しかし惑星の軌道近傍でトルクが粘性トルクを上回るようになると、ガス密度が低い円環状のギャップ (溝、あるいは空隙) が形成される。このギャップの深さは、ガスの温度と粘性、そして惑星質量に依存する。 ギャップを横切るガスが存在しないという単純な仮定の下では、惑星の移動は円盤ガスの粘性進化に従う。ギャップより内側の円盤では、惑星はガスが恒星に降着するのに従って、粘性の時間スケールで内側にらせん状に落下する。この場合、惑星移動の速度は典型的にはタイプI移動の速度よりも遅くなる。しかしギャップより外側の円盤では、ガス円盤が粘性拡散を起こしている場合は外向き移動が起こり得る。木星質量程度の惑星は典型的な原始惑星系円盤の中ではタイプII移動の速度で移動を起こすと考えられており、タイプI移動からタイプII移動への遷移は、惑星が部分的なギャップを形成し始める土星質量程度で起きると考えられる。タイプII移動はホット・ジュピターの形成メカニズムのひとつである。 より現実的な状況では、円盤の温度や粘性の条件が極端なもので無い限り、ギャップを通過するガスの流れが存在する。この質量の流れの結果として、惑星に働くトルクはタイプI移動の際に働くトルクに似て円盤の局所的な特性に影響を受けやすい可能性がある。そのため粘性円盤では、通常タイプII移動はタイプI移動の変形された形式として統一された形式で記述することが出来る。タイプI移動からタイプII移動への遷移は一般的には滑らかに起きるが、滑らかな遷移からのずれが起きうる場合も発見されている。状況によっては、惑星が周囲の円盤ガスに対して離心的な擾乱を誘起した場合、タイプII移動がゆっくりになったり、停止したり、あるいは移動方向が反転する場合がある。
※この「タイプII移動」の解説は、「惑星移動」の解説の一部です。
「タイプII移動」を含む「惑星移動」の記事については、「惑星移動」の概要を参照ください。
- タイプII移動のページへのリンク