CDWピン止めの古典論モデル
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/02/04 10:06 UTC 版)
「電荷密度波」の記事における「CDWピン止めの古典論モデル」の解説
CDW波長 λCDW = π / kF が格子定数に対してコメンシュレート(整数比となる)である場合、負電荷を持ったCDWの山の位置が正電荷を持った格子位置と全域で重なり合うため、CDWは容易に動くことはできない。これに対し、CDWの伝導が起きうる鎖状化合物では λCDW が格子定数に対してインコメンシュレート(整数比ではない)である。そのような物質では、不純物がCDWを「ピン止め(ピニング)」することでCDWの位相 φ に対する並進対称性が破られている。もっとも単純なモデルではピン止めを u(φ) = u0[1 - cosφ] の関数形を持つサイン-ゴードンポテンシャルとして扱う。この周期ポテンシャルは形状から洗濯板ポテンシャルとも呼ばれる。電場はポテンシャル全体を傾けるように作用する。傾きを大きくしていき、位相がポテンシャル障壁を乗り越えて滑り出したときピン止めが外れた(デピニング)と考え、その電場を古典論的なしきい電場とする。このモデルは交流電場に対するCDWの応答を表すものでもあるため、過減衰振動子モデルと呼ばれている。以上の描像はCDW電流に対する狭帯域ノイズのスケーリングを上手く説明する 。 しかしながら、そのような不純物は結晶全域にランダムに配置されているため、より現実的にはCDW位相 φ の最適値が局所的に変動することを踏まえてサイン-ゴードン描像に無秩序ポテンシャルを導入しなければならない。その実例が福山-Lee-Rice(FLR)モデルで、CDWは φ の空間勾配で表される弾性エネルギーとピン止めエネルギーの和を最小化するように最適な位相配置を取る。FLRから導かれる二つの極限のうち、「弱いピン止め」は正味の電荷を持たない不純物などに相当するもので、位相は複数の不純物が含まれるほど長い距離にわたってゆっくり変化する。このときデピニング電場は ni2 ( ni は不純物密度)に比例する。もう一方の「強いピン止め」では個々の不純物がCDW位相を局所的に変化させるだけの強さを持ち、デピニング電場は ni に対して線形である。FLRとは異なるアプローチとしてランダムな不純物分布を取り入れた数値シミュレーション(ランダムピン止めモデル)などもある。
※この「CDWピン止めの古典論モデル」の解説は、「電荷密度波」の解説の一部です。
「CDWピン止めの古典論モデル」を含む「電荷密度波」の記事については、「電荷密度波」の概要を参照ください。
- CDWピン止めの古典論モデルのページへのリンク