音速理論の完成
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/03/30 06:21 UTC 版)
1762年、ジョゼフ=ルイ・ラグランジュは音速理論の問題を解決させる1つの方法を提案した。それは、ニュートンが『プリンキピア』で採用した、弾性力が密度に正比例するという仮定を取り去ることである。こうすることにより、音速の理論値は変わる。そしてラグランジュは、弾性力は密度のべき乗に比例すると直感して計算し、その結果、弾性力が密度の3分の4乗に比例する場合、音速の理論値は実験値と比例することを示した。しかしこの計算は物理的な根拠に乏しいため、ラグランジュはこの仮説を「はかない憶測」だとして捨ててしまった。 1802年、ジャン=バティスト・ビオは、空気は急激に圧縮させると温度が上がり、膨張させると温度が下がることにふれた上で、音の伝播について次のように述べた。 音の伝播における空気の膨張と収縮の繰り返しは、それをこうむる粒子中に、我々が上でその存在を理解した温度変化と類似の同程度のごく小さな温度変化を必然的に引き起こす。そしてこの変化はその弾性に影響を及ぼす。その結果、空気の弾性がその密度に比例するという法則が成り立つのは、この流体が再び静止した上で体積変化をこうむる以前の温度を回復してからに限られる。濃縮と希薄化が短い間隔で繰り返される運動状態にあっては、相応する温度変化を考慮しなければならなくなる。 音は空気の膨張・収縮によって伝わるとすると、その際に空気の温度は変化することになる。ニュートンは音の伝播を等温変化(ボイルの法則が成り立つ)として計算したが、音速を正しく求めるならば、温度変化も考えなければならない。ビオはラグランジュの手法を使って、弾性力が密度の1+α乗に比例すると考え、このとき音速は、これまでの理論値の 1 + α {\displaystyle {\sqrt {1+\alpha }}} 倍になると計算した。 αの値は「実験により直接知る手だてはない」としながらも、ビオは、ギヨーム・アモントンによる空気の弾性力の実験、およびジョセフ・ルイ・ゲイ=リュサックによる気体の膨張実験から、α = 0.95と見積もった。しかしこのαから求めた音速値は、毎秒1227.73ピエ(399メートル)と、実験値よりもかなり大きくなってしまう。ビオは、このずれは仮説が正確でなかった等の理由によるものだとしたが、音速を計算するときに空気の圧縮による温度変化を考える必要性については最後まで強調した。 ピエール=シモン・ラプラスも、ビオと同じように空気の圧縮にともなう熱を考慮に入れるべきだと考え、そして、この空気の圧縮・膨張は、現在の用語でいう断熱変化であると考えた。 この理論によると、ビオが述べたように弾性力は密度の 1+α 乗に比例し、その 1+α の値は、空気の定積モル比熱 c V {\displaystyle c_{V}} と定圧モル比熱 c P {\displaystyle c_{P}} の比で表せる。 すなわち、1+α = γとおくと、 γ = c P c V {\displaystyle \gamma ={\frac {c_{P}}{c_{V}}}} そしてこのγを使うと、音速vは、 v = γ P ρ {\displaystyle v={\sqrt {\gamma {\frac {P}{\rho }}}}} と書くことができる。このラプラスの研究によって、音速の理論はほぼ完成された。
※この「音速理論の完成」の解説は、「音速」の解説の一部です。
「音速理論の完成」を含む「音速」の記事については、「音速」の概要を参照ください。
- 音速理論の完成のページへのリンク