行列要素の計算
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/04/04 14:40 UTC 版)
上述のとおり、隣接原子の作るポテンシャルの中心原子への影響は限られているので、行列要素 βm はイオン化エネルギーに比してあまり大きくない。もし、 βm があまり小さくないならば、それは隣接原子の作るポテンシャルの中心原子への影響が小さくないことを意味する。そのような場合、何らかの理由でその系の電子構造には強結合模型があまりよくあてはまらないということである。例えば、原子間距離が近すぎたり、格子上の原子もしくはイオンの電荷が異ったりする場合が挙げられる。 原子間行列要素 γm,l は、原子軌道が詳しく分かっているならば直接計算することができる。しかし、ほとんどの場合でこれは不可能である。この行列要素をパラメトライズする方法は数多く存在する。化学結合エネルギー(英語版)のデータからパラメトライズする方法などが挙げられる。ブリュアンゾーン内の対称性の高い点におけるエネルギーと固有状態を計算し、別途調べたバンド構造と整合するように行列要素の積分内に表われる値を決めることができる。 原子間重なり行列要素 αm,l は小さいか、無視できる。この要素が大きいことはやはり強結合近似がうまくあてはまらないことを意味する。大きな重なりはたとえば原子間距離が小さすぎるときなどに見られる。典型金属や遷移金属のブロードなsバンドやspバンドは、第二近傍原子の影響を含めた行列要素および重なり積分を導入することでよりよく現実のバンドを再現することができるが、金属の波動関数を表わすための模型としてはあまり有用だとはいえない。凝集系におけるブロードなバンドはほとんど自由な電子模型のほうがより良く説明できる。 強結合模型はバンド幅が小さく、電子が強く局在しているdバンドやfバンドの場合に特によい近似となる。また、ダイヤモンドやシリコンなどの隣接する原子の少ない結晶構造の場合にもよくあてはまる。この模型とほとんど自由な電子モデルを組み合わせることは簡単にでき、NFE-TBハイブリッド模型と呼ばれる。
※この「行列要素の計算」の解説は、「強結合近似」の解説の一部です。
「行列要素の計算」を含む「強結合近似」の記事については、「強結合近似」の概要を参照ください。
- 行列要素の計算のページへのリンク