局所熱力学平衡と大域的熱力学平衡
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/10/24 01:44 UTC 版)
「熱力学的平衡」の記事における「局所熱力学平衡と大域的熱力学平衡」の解説
局所的な熱力学平衡と大域的な熱力学平衡とを区別することは重要である。熱力学において、一つの系の内部で、あるいは系と系との間、あるいは外界との何らかのやりとりは示強性の変数によって制御される。例えば、温度は熱のやりとりを制御する物理量である。 大域的熱力学平衡 (Global thermodynamic equilibrium, GTE) とは、あらゆる示強性変数が系全体で一様になっていることで、局所熱力学平衡 (Local thermodynamic equilibrium, LTE) とは、示強性変数は時間的にも空間的にも変化するが、その変化が非常に緩やかで、あらゆる場所がその周囲と熱力学的平衡状態になっていると見なせることを意味する。 もし、系を記述する示強性変数が極端な変化を要請されたなら、それらの示強性変数はそもそも定義できなくなってしまい、系の状態は大域的平衡でも局所平衡でもなくなる。 局所熱力学平衡は充分多数の粒子集団に対してのみ適用できる、ということに注意すべきである。例として、局所熱力学平衡は通常、質量を持つ粒子についてのみ適用される。放射気体中で、光子の放出と吸収は熱力学的平衡にある必要はなく、気体を構成する粒子たちが局所平衡にあるために必要となることもない。あるいは、自由電子が平衡状態になることすらも、より大きな質量を持つ原子や分子たちが局所平衡を実現するために必要でないと考えられる場合もある。 一つの例として、氷を一つ、水に浮かべたグラスの中においても局所平衡は成り立つ。グラスの中の温度は、局所平衡であるため、各点でそれぞれ温度が定義でき、また、氷に近いところほどより温度が低い。ある与えられた点で近傍の水分子のエネルギーを測定できたとすると、分子のエネルギー分布はある温度に対するマクスウェル=ボルツマン分布になるだろう。また別の点の近傍での水分子のエネルギーを測定すると、今度はまた別の温度に対応するマクスウェル=ボルツマン分布が見られるだろう。 氷水の例から分かる通り、局所熱力学平衡は、局所的にも大域的にも、定常的であることを要求しない。言い換えると、いずれの場所でも温度が一定である必要はない。しかし、どの点においてもその変化は充分に遅く、そこに含まれる分子集団の速度分布は、ほとんどマクスウェル・ボルツマン分布と見なせるものでなければならない。大域的非平衡状態は、外界と系との間でやりとりをし続ければ、安定に保つことができる。 大域的に安定な定常状態は、例えば、水の入ったグラスに細かく摩り下ろした氷を水で解ける分を補うように加え、また解けた水を流し続けることによっても実現できる。輸送現象とは、系を局所平衡から大域的平衡へ促す過程のことである。またグラスの水を例にとれば、熱の拡散はグラスの中の水を大域的熱力学平衡へ導くものであり、大域的に平衡となれば、グラスの中の温度は完全に一様になる。
※この「局所熱力学平衡と大域的熱力学平衡」の解説は、「熱力学的平衡」の解説の一部です。
「局所熱力学平衡と大域的熱力学平衡」を含む「熱力学的平衡」の記事については、「熱力学的平衡」の概要を参照ください。
- 局所熱力学平衡と大域的熱力学平衡のページへのリンク