局所体とは? わかりやすく解説

局所体

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/11/20 14:17 UTC 版)

局所体(きょくしょたい、: local field)とは、離散付値に対して完備であり、剰余体有限体である付値体のことである。

局所体の定義としては、上に挙げたもの以外にもいくつかあり、そのうちの代表的なものを挙げる。これらは互いに同値な定義である。

  1. 局所体とは、非アルキメデス付値に対して完備であり、付値環コンパクト[要曖昧さ回避]である付値体のことである。
  2. 局所体とは、自明ではない乗法付値に対して連結ではない局所コンパクトな付値体のことである。
  3. 局所体とは、p進体もしくは有限体係数の1変数ベキ級数体の有限次代数拡大体と付値体として同型[1]な付値体のことである。

応用上、局所体をp進体もしくは有限体係数の1変数ベキ級数体の有限次代数拡大体に限定することも多い。 その場合、局所体を

  • 大域体(代数体もしくは有限体上の1変数代数関数体)の離散付値による完備化

と定義されることもある。このとき、大域体から局所体を得ることを局所化という。

上記の定義の他に、実数体や複素数体も局所体に含めることもある。これらが

  • アルキメデス付値に対して完備である。
  • 連結である局所コンパクトな付値体である。
  • 代数体のアルキメデス付値による完備化である。

と、上記局所体の定義とよく似た性質を持っているからである。

この場合、非アルキメデス付値による局所体を非アルキメデス的局所体、アルキメデス付値による局所体をアルキメデス的局所体という。

しかし実数体(複素数体)と p進体または1変数ベキ級数体とでは性質の異なる部分が多いので、ここでは当初の定義通り、特に断らない限り局所体といった場合、実数体や複素数体は含まれないとする。しかし、局所体との類似点や相違点を知るために、局所体の性質に対応する実数体や複素数体の結果も記述することにする。

なお、この項では局所体としての性質を記述し、p進体もしくはベキ級数体固有の性質については述べない。それらに対する詳細は個々の記事を参照のこと。

位相的性質

局所体を特徴付ける位相的性質を述べる。

  • 局所体 K の付値環はコンパクトであり、K のコンパクトな部分環は付値環の部分環である。
  • 付値環の任意のイデアルはコンパクトな開集合である。
  • 乗法群
国立図書館 その他

局所体

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/05/09 03:44 UTC 版)

代数的整数論」の記事における「局所体」の解説

詳細は「局所体」を参照 数体 K を素点 w で完備化すると完備体(英語版)を得る。付値アルキメデス的ならば R または C を得、非アルキメデス的で有理数素数 p の上にあれば、有限拡大 Kw / Qp: 有限剰余体を持つ完備離散付値体を得る。この手順は体の算術単純化し問題局所的に研究できるうになる例えば、クロネッカー・ウェーバーの定理類似の局所的な主張から容易に結論できる。局所体の研究背後にあるこの哲学幾何学的な手法によって大きく動機づけされる。代数幾何学では、多様体極大イデアル局所化することで点で局所的に研究することが一般的である。すると大域的な情報は、局所的なデータ貼り合わせることで復元できる。この精神代数的整数論において取り入れられる数体整数環素元与えられると、その素元において局所的に体を研究することが望ましい、したがって整数環をその素元局所化し、多く幾何学精神分数体完備化する。

※この「局所体」の解説は、「代数的整数論」の解説の一部です。
「局所体」を含む「代数的整数論」の記事については、「代数的整数論」の概要を参照ください。

ウィキペディア小見出し辞書の「局所体」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「局所体」の関連用語

局所体のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



局所体のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの局所体 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの代数的整数論 (改訂履歴)、分岐 (数学) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS