外延量と内包量
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/07/12 02:21 UTC 版)
銀林と遠山らにより考案され日本の小学校算数教育で使われることのある分類概念である。熱力学で使われる示量変数 (extensive variable) および示強変数 (intensive variable) と発想が似てはいるが別の概念であり、自然科学一般分野や社会科学一般分野、日本国外ではこの分類概念はほとんど使われていない(外部リンクの英語版wikipedia「量」の項参照)。英語へは、外延量はextensive quantity、内包量はintensive quantityと訳されるが、この言葉は英語では熱力学で使われる示量変数および示強変数と同義語である(外部リンクの英語版wikipedia「物理量」、及び示量性と示強性を参照)。 銀林らの分類では、量はまず分離量と連続量に分けられる。連続量は外延量と内包量に分けられる。内包量は度と率に分けられる。ただし分離量を外延量とみなす立場もあるらしい。 外延量は加法性が成り立つ量であり、長さ、質量、時間、面積、体積などである。内包量は加法性が成り立たない量であり、温度、速度、密度、濃度、利率などである。内包量はまた、他の量の乗除によって生み出されたものであり、異なる単位の量同士の乗除によるものが度であり、同じ単位の量同士の乗除によるものが率である。例えば、速度、密度、温度は度であり、濃度、利率は率である。 ここでいう加法性とは測度論のなかの術語であり、二つの集合の合併が加法を意味するということである。つまり共通部分を持たない2つの集合A,Bにそれぞれ量f(A),f(B)が付随するとき、f(A∪B)=f(A)+f(B)が成立することである。例えば内包量である速度にも加法は定義されるが、上記の意味の加法性は成り立たない。つまり外延量とは測度論でいう可算加法的測度であると言える。 遠山によれば、量のなかには加法性の明らかでないものもあって、区別はつねに明確にできるとは限らない。また銀林によれば、角度は外延量と内包量の境にある量である。
※この「外延量と内包量」の解説は、「量」の解説の一部です。
「外延量と内包量」を含む「量」の記事については、「量」の概要を参照ください。
- 外延量と内包量のページへのリンク