フィッシャーの交換方程式の問題
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2015/06/26 14:17 UTC 版)
「フィッシャーの交換方程式」の記事における「フィッシャーの交換方程式の問題」の解説
フィッシャーの交換方程式の問題は、使われなかった貨幣をどのように扱うのかという問題である。例えば、ある貨幣として何枚かの1000円札を使う経済があって、この中に一度も使われなかった1000円札があったとしよう。すると、この1000円に関してはM=1000であっても、V=0(すなわち、一度も使われなかった)なので、MV=0ということになる。つまり、1000円という貨幣が存在しながら、貨幣としては使われなかったということになる。しかしながら、この考えを積極的に取り入れると貨幣数量説の考え方に関する問題が生じる。貨幣数量説とは簡単に言えば「貨幣を増やせば物価が上がる」という考え方だったが、MV=PTと言う等式において、貨幣量を増やしても購買に使用されない貨幣があると考えると、貨幣量を増やしても物価上昇につながらないということになってしまう。そこで、使われなかった貨幣の扱い方は2通り考えられる。第一に、貨幣数量説では、購買に使用されない貨幣は、フィッシャーの交換方程式にはそもそも含まれないというものである。あるいは、2つ目の扱い方として、貨幣が増加したときに、使われなかった貨幣も含むとすると、その分だけ貨幣流通速度のVが低下するというものである。この考え方を積極的に取り入れ、貨幣量を増やしても貨幣流通速度が下がる可能性を考慮してしまうと、MV=PTという方程式のMとPの比例関係が成り立たなくなり、貨幣数量説の考え方に問題が生ずる。 現実には、貨幣が使用されない場合とは、例えば購買を控えたために使用されなかった貨幣や、将来の使用のために退蔵された貨幣が考えられよう。 また、等式MV=PTにおける取引量Tにも問題がある。フィッシャーの交換方程式MV=PTは恒等式であり、常に正しいと考えられるが、取引量Tと物価Pの積が常に購買価格(MV)と等しくなるためには、売れ残りの商品を取引量Tから除く必要がある。なぜなら、買われなかった商品の分を取引量Tに加えれば、取引量Tと物価Pの積が購買価格(MV)と等しくならなくなってしまうためである。 もうひとつの問題が、貨幣の種類の問題である。今までの例では1000円札だけを貨幣として挙げたが、現実には1000円札以外にも5000円札や500円玉、1円玉など、多くの種類の貨幣が存在する。それらすべてを考慮して「貨幣が一定期間に何回使用されたか」という定義をするならば、全てを共通単位、例えば最小単位の1円に還元する必要がある。つまり、1000円札が使用された場合、1円玉が1000回使用されたとみなし、500円玉が使用された場合は、1円玉が500回使用されたと考えるのである。すなわち、Vそのものを計算することは現実的には不可能である。また、このような考え方をすると、1000円札や500円玉といった区別のない預金通貨や電子通貨まで、貨幣の流通速度が適用できるようになる。
※この「フィッシャーの交換方程式の問題」の解説は、「フィッシャーの交換方程式」の解説の一部です。
「フィッシャーの交換方程式の問題」を含む「フィッシャーの交換方程式」の記事については、「フィッシャーの交換方程式」の概要を参照ください。
- フィッシャーの交換方程式の問題のページへのリンク