電気通信 現代の電気通信

電気通信

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/06/04 00:58 UTC 版)

現代の電気通信

電話

光ファイバーは長距離通信用に安価な帯域幅を提供する。

アナログの電話網では、電話をかけると電話交換機群によって話したい相手とつながる。交換機群は2つの利用者間の電気的接続を形成する。それらの設定は電話をかけた際の電話番号のダイヤルパルスで電気的に決定される。接続が確立すると、電話をかけた側の声が受話器マイクロフォンで電気信号に変換されて伝送される。その電気信号はネットワークを経由して通話先に送られ、そこで受話器のスピーカーによって音声に戻される。これとは反対方向に働く電気的接続があり、それによって相互に対話することができる[38][39]

一般家庭の固定電話の多くはアナログ式である。すなわち、話者の声が信号の電圧に直接反映される。ただし、電話事業者は局間の伝送を透過的にデジタル化しているところが増えている。デジタル信号の利点は、アナログ信号と違って長距離であっても音質が劣化しせず、インターネットのデータと一緒に送ることもできる点である。

携帯電話は電話網に大きな影響を与えた。多くの国で携帯電話の契約数が固定電話の契約数を超えている。2005年の携帯電話販売数は全世界で8億1660万台であり、アジア太平洋(2億400万台)、西ヨーロッパ(1億6400万台)、CEMEA(中央ヨーロッパ、中東、アフリカ: 1億5300万台)、北米(1億4800万台)、中南米(1億200万台)のそれぞれの市場で同じように成長している[40]。1999年から5年間の成長率を新規加入者数で見ると、アフリカでの成長率が58.2%と群を抜いている[41]。携帯電話もGSMW-CDMAといったデジタル伝送が増え、AMPSなどのアナログ方式は減少しつつある[42]

電話通信には目に見えないところで大きな変化も起きている。1988年にはTAT-8(8代目の大西洋横断電話ケーブルで初の光ファイバー海底ケーブル)が運用を開始し、1990年代には光ファイバーに基づくシステムが広く採用されていった。光ファイバーによる通信は、データ容量が劇的に増大するという利点がある。TAT-8自体は従来の銅線製ケーブルの10倍の電話回線容量があり、近年の光ファイバーケーブルではTAT-8の25倍の容量がある[43]。このデータ容量の増加にはいくつかの要因がある。まず、光ファイバーは他のテクノロジーよりも物理的に小型化できる。そして、光ファイバーでは漏話の心配がないため、数百本のファイバーを1本のケーブルに仕込むことができる。また、1本のファイバーのデータ容量は多重化によって指数関数的に増大させることができる[44][45]

光ファイバー網の多くは Asynchronous Transfer Mode (ATM) というプロトコルを使っている。ATMプロトコルは音声やデータを同時に転送可能とする。それによって網上にデータの経路を確立でき、その経路にトラフィック契約を結びつけることができることから、公衆電話回線網に適している。トラフィック契約とは顧客と網の間の合意であり、網がデータをどのように扱うかを定めたものである。網がトラフィック契約の条件を満たせない場合、接続自体が受理されない。電話の呼はある一定のビットレートを保証するよう契約を結び、音声が遅延したり途切れたりしないことを保証する性質があるため、この点は重要である[46]。ATMプロトコルと類似する技術として Multi-Protocol Label Switching (MPLS) がある[47]

ラジオとテレビ

デジタルテレビ放送規格の採用状況

放送システムにおいては、中央の高出力の放送塔が高周波の電磁波を発信し、それを多数の低出力の受信機が受信する。塔から発せられる高周波は、映像情報や音声情報を含む信号を変調したものである。受信機をチューニングしてその周波数に合わせると、復調を行って元の映像信号や音声信号を取り出す。放送信号はアナログ(情報に応じて連続的に変換する信号)またはデジタル(情報を離散値で符号化したもの)である[16][48]

放送業界は世界的にアナログからデジタルへの重大な転換点にある。この変化は、集積回路がより安くより高速かつ大容量になったことで可能になった。デジタル放送は、アナログ放送につきものの問題点を解消できるという利点がある。テレビの場合、スノーノイズゴースト障害といった歪みなどの問題が解消される。これらの障害はアナログ伝送の性質に起因するもので、ノイズの影響が最終的な画質に現れたものと言える。デジタル信号では離散値しか扱わないためこのような問題がなく、多少のノイズでは最終的な画質に影響しない。ノイズが強すぎると復号したメッセージは大きく変化している可能性があり、それがデジタル伝送の弱点である。前方誤り訂正を受信機で行えば複数ビットの誤りを訂正できるが、ノイズが強ければ訂正では追いつかず、伝送は不可能となる[49]

デジタルテレビ放送ではATSCDVBISDBという3種類の規格があり、それぞれを世界各国が採用している(右図の地図参照)。いずれも動画圧縮にはMPEG-2を使っている。音声圧縮については、ATSCは Dolby Digital AC-3、ISDBは Advanced Audio Coding (MPEG-2 Part 7) を採用し、DVBは1つに定めていないが一般に MPEG-1 Part 3 Layer 2 を使っている。変調方式もそれぞれ異なる。デジタル音声放送では、ほぼ世界中が Digital Audio Broadcasting という規格を採用している。例外としてアメリカ合衆国だけは HD Radio という規格を採用している。HD Radio では、従来のAMやFMのアナログ放送とデジタル放送を共存させるIBOC (In-Band On-Channel) 方式を採用している。

デジタルへの切り替えが進んでいるが、多くの国ではアナログテレビ放送も続けられている。ただし、アメリカ合衆国では2度の延期を経て2009年7月12日にアナログテレビ放送が終了となった[50]。アナログテレビには3種類の規格 PALNTSCSECAM がある(分布はこちらを参照)。ラジオ放送のデジタル化は、受信機の価格に大きな差があるため、テレビよりもさらに困難と言われている。アナログのラジオ放送は一般に振幅変調(AM)と周波数変調(FM)に分けられる。FMにおけるステレオ方式としては、差和方式AM-FM方式などがある。

インターネット

OSI参照モデル

インターネットはコンピュータの世界的ネットワークであり、Internet Protocol を使って相互に通信できるコンピュータネットワークである[51]。インターネット上のコンピュータには一意なIPアドレスが割り当てられており、他のコンピュータが情報を送る際の宛先として使う。そのため、インターネット上では各コンピュータがIPアドレスを使って任意のコンピュータにメッセージを送ることができる。そのメッセージには送信元のIPアドレスが含まれているので、双方向通信が可能となる。インターネットはコンピュータ間のメッセージ交換で成り立っている[52]

2008年現在、全世界の21.9%の人々がインターネットに頻繁にアクセスしている。北米では73.6%、オセアニアでは59.5%、ヨーロッパでは48.1%の人々がアクセスしている[53]ブロードバンドインターネット接続の普及率という観点では、アイスランド(26.7%)、韓国(25.4%)、オランダ(25.3%)などが世界をリードしている[54]

インターネットでは、通信プロトコルによってコンピュータやルーターの相互通信の手順が決められている。コンピュータネットワークの通信は階層型アプローチを採用しており、プロトコルスタック内の各プロトコルは他のプロトコルとはほぼ独立して動作している。これにより、下層のプロトコルを物理的なネットワークに最適化しつつ、上層のプロトコルは物理ネットワークとは独立して動作させることができる。あるコンピュータがイーサネットでインターネットに接続するのか、それともWi-Fiで接続するのかに関わらず、全く同じウェブブラウザを使うことができるのは、この階層型アプローチのおかげである。プロトコルはOSI参照モデル(右図参照)と関連付けて語られることが多い。これは開放型システム間相互接続という失敗に終わったプロトコルスイート構築の試みの初期段階である1983年に策定されたモデルである[55]

インターネットでは、物理層の伝送媒体やデータリンク層のプロトコルは送信元から宛先までにメッセージを送る間に複数の種類を使うことになる。つまりインターネットでは物理的な伝送媒体やデータリンクプロトコルに制限を設けていない。そのため、状況に応じて最適な伝送媒体やプロトコルを採用できる。実際、大陸間の通信には Asynchronous Transfer Mode (ATM) プロトコルと光ファイバーが使われている。これには公衆交換電話網と同じ基盤を共用していることが多い。

ネットワーク層では、Internet Protocol (IP) を基本として標準化されており、論理アドレスが設定されている。World Wide Web では、Domain Name System を使って人間にも読める形式の名前から「IPアドレス」を導出する(例えば www.google.com から 72.14.207.99 を得る)。現在、最もよく使われている Internet Protocol はバージョン4だが、バージョン6(IPv6)への移行が差し迫っている。

トランスポート層では、多くの場合 Transmission Control Protocol (TCP) または User Datagram Protocol (UDP) を使う。基本的にTCPは送信した全てのメッセージが確実に受信されなければならないときに使われ、UDPはそれが必須ではないときに使われる。TCPではパケットが失われた場合に再送が行われ、上位層には順番通りにメッセージが渡される。UDPではパケットが失われても再送は行われないし、順序も不定である。TCPもUDPもポート番号によってパケットを処理すべきアプリケーションやプロセスを指定する[56]。ある種のアプリケーション層のプロトコルは特定のポートを使うため、ネットワーク管理者はトラフィックを操作して特定の要求に合うように調整できる。例えば特定のポートへのトラフィックをブロックしたり、優先順位を低くして性能を制限したりできる。

トランスポート層より上層では、セッション層とプレゼンテーション層に大まかに当てはまり、時々使われるプロトコルがある。例えば Secure Sockets Layer (SSL) や Transport Layer Security (TLS) がそれにあたる。これらのプロトコルは転送されるデータが秘匿されていることを保証する。ブラウザに南京錠のアイコンが表示されているとき、それらが使われている[57]。最後にアプリケーション層にはインターネットユーザーがよく目にする多数のプロトコルがあり、HTTP(ウェブブラウジング)、POP3(電子メール)、FTP(ファイル転送)、IRC(チャット)、BitTorrent(ファイル共有)などがある。

LAN

Local Area Network(LAN、数km以内で機能するコンピュータネットワーク)の特徴は、インターネットとは別である。この程度の規模のネットワークは大規模ネットワークの特徴を全て備える必要はなく、それによってよりコストを低減させることができる。

1980年代中ごろ、OSI参照モデルのデータリンク層とアプリケーション層の間のギャップを埋めるプロトコルスイートがいくつか生まれた。例えば、AppleTalkIPXNetBIOSなどで、特にMS-DOSユーザーによく利用されたIPXが1990年代初期まで広く採用されていた。そのころには既にTCP/IPが存在していたが、主に政府機関や研究機関での利用に限られていた[58]。インターネットが成長し、インターネット関連のトラフィックの割合が増えてくると、LANでもTCP/IPを採用することが多くなり、今ではTCP/IPがLAN上でも一般的になっている。TCP/IP化の動きを助けたテクノロジーとして、クライアントが自身のネットワークアドレスを探すのを助けるDHCPがある。同様の機能はAppleTalkやIPXやNetBIOSのプロトコルスイートにも標準で備わっていた[59]

データリンク層はLANとインターネットで大きく異なる部分である。大規模ネットワークのデータリンクプロトコルとしては、Asynchronous Transfer Mode (ATM) や Multi-Protocol Label Switching (MPLS) が使われているが、LANではイーサネットトークンリングが典型的である。これらはインターネットのデータリンク層に比較して単純で(例えば、Quality of Service 保証などの機能がない)、CSMA/CDによる衝突回避を行う。そのため、設定に際してさらにコストを抑えられるという違いがある[60]

1980年代から1990年代にかけてはトークンリングもそれなりに使われていたが、現在ではLANのほとんどが有線または無線のイーサネットとなっている。物理層では、有線イーサネットの多くはツイストペアケーブルを使っている。しかし、初期の実装では同軸ケーブルを使っていたし、最近の高速なイーサネットでは光ファイバーを使う実装もある[61]。光ファイバーを使う場合、シングルモードとマルチモードで特徴が異なる。マルチモード・光ファイバーは太く、製造コストは低いが帯域幅が小さく減衰が大きい(したがって、長距離には向かない)[62]


  1. ^ The Electromagnetic Telegraph, J. B. Calvert, 19 May 2004.
  2. ^ The Atlantic Cable, Bern Dibner, Burndy Library Inc., 1959
  3. ^ Antonio Santi Giuseppe Meucci, Eugenii Katz. (Retrieved May, 2006 from http://chem.ch.huji.ac.il/~eugeniik/history/meucci.html)
  4. ^ Elisha Gray, Oberlin College Archives, Electronic Oberlin Group, 2006.
  5. ^ Connected Earth: The telephone, BT, 2006.
  6. ^ History of AT&T, AT&T, 2006.
  7. ^ James Bowman Lindsay, Dundee City Council
  8. ^ Tesla Biography, Ljubo Vujovic, Tesla Memorial Society of New York, 1998.
  9. ^ Tesla's Radio Controlled Boat, Twenty First Century Books, 2007.
  10. ^ The Pioneers, MZTV Museum of Television, 2006.
  11. ^ Philo Farnsworth, Neil Postman, TIME Magazine, 29 March 1999
  12. ^ George Stlibetz, Kerry Redshaw, 1996.
  13. ^ Hafner, Katie (1998). Where Wizards Stay Up Late: The Origins Of The Internet. Simon & Schuster. ISBN 0-684-83267-4 
  14. ^ Data transmission system, Olof Solderblom, PN 4,293,948, October 1974.
  15. ^ Ethernet: Distributed Packet Switching for Local Computer Networks, Robert M. Metcalfe and David R. Boggs, Communications of the ACM (pp 395-404, Vol. 19, No. 5), July 1976.
  16. ^ a b c Haykin, Simon (2001). Communication Systems (4th ed.). John Wiley & Sons. pp. 1–3. ISBN 0-471-17869-1 
  17. ^ Ambardar, Ashok (1999). Analog and Digital Signal Processing (2nd ed.). Brooks/Cole Publishing Company. pp. 1–2. ISBN 0-534-95409-X 
  18. ^ a b ATIS Telecom Glossary 2000, ATIS Committee T1A1 Performance and Signal Processing (approved by the American National Standards Institute), 28 February 2001.
  19. ^ Yao, Colin (2008年6月14日). “Introduction to SONET (Synchronous Optical Networking)”. Articlesbase.com. http://www.articlesbase.com/computers-articles/introduction-to-sonet-synchronous-optical-networking-fiber-optic-technologies-tutorial-series-449247.html 
  20. ^ Haykin, pp 344-403.
  21. ^ Haykin, pp 88-126.
  22. ^ Telecom Industry Revenue to Reach $1.2 Trillion in 2006, IT News Online, 2005-12-18.
  23. ^ Lenert, Edward (12 1998). “A Communication Theory Perspective on Telecommunications Policy”. Journal of Communication 48 (4): 3–23. doi:10.1111/j.1460-2466.1998.tb02767.x. 
  24. ^ Mireille Samaan (April 2003). The Effect of Income Inequality on Mobile Phone Penetration. Boston University Honors thesis. 
  25. ^ Röller, Lars-Hendrik; Leonard Waverman (2001). “Telecommunications Infrastructure and Economic Development: A Simultaneous Approach”. American Economic Review 91 (4): 909–923. ISSN 0002-8282. 
  26. ^ Riaz, Ali (1997). “The role of telecommunications in economic growth: proposal for an alternative framework of analysis”. Media, Culture & Society 19 (4): 557–583. doi:10.1177/016344397019004004. 
  27. ^ Digital Access Index (DAI)”. itu.int. 2008年3月6日閲覧。
  28. ^ World Telecommunication Development Report 2003, International Telecommunication Union, 2003.
  29. ^ Fischer, Claude S.. "'Touch Someone': The Telephone Industry Discovers Sociability." Technology and Culture 29.1 (Jan., 1988): 32-61. JSTOR. Web. 4 Oct. 2009.
  30. ^ “How do you know your love is real? Check Facebook”. CNN. (2008年4月4日). https://edition.cnn.com/2008/LIVING/personal/04/04/facebook.love/index.html 
  31. ^ I Just Text To Say I Love You, Ipsos MORI, September 2005.
  32. ^ Online News: For many home broadband users, the internet is a primary news source”. Pew Internet Project (2006年3月22日). 2010年1月20日閲覧。
  33. ^ 100 Leading National Advertisers” (PDF). Advertising Age (2008年6月23日). 2009年6月21日閲覧。
  34. ^ International Telecommunication Union : About ITU. ITU. Accessed 21 July 2009. (ITRに関する PDF 文書)
  35. ^ Codding, George A. Jr.. "Jamming and the Protection of Frequency Assignments". The American Journal of International Law, Vol. 49, No. 3 (Jul., 1955), Published by: American Society of International Law. pp. 384-388. Republished by JSTOR "URL: http://www.jstor.org/stable/2194872 JSTOR: The American Journal of International Law". Accessed 21 July 2009.
  36. ^ a b c d Wood, James & Science Museum (Great Britain) "History of international broadcasting". IET 1994, Volume 1, p.2 of 258 ISBN 0863413021, ISBN 9780863413025. Republished by Googlebooks. Accessed 21 July 2009.
  37. ^ a b Garfield, Andrew. "The U.S. Counter-propaganda Failure in Iraq", FALL 2007, The Middle East Quarterly, Volume XIV: Number 4, Accessed 21 July 2009.
  38. ^ How Telephone Works, HowStuffWorks.com, 2006.
  39. ^ Telephone technology page, ePanorama, 2006.
  40. ^ Gartner Says Top Six Vendors Drive Worldwide Mobile Phone Sales to 21% Growth in 2005, Gartner Group, 28 February 2006.
  41. ^ Africa Calling, Victor and Irene Mbarika, IEEE Spectrum, May 2006.
  42. ^ Ten Years of GSM in Australia, Australia Telecommunications Association, 2003.
  43. ^ Milestones in AT&T History, AT&T Knowledge Ventures, 2006.
  44. ^ Fundamentals of DWDM Technology, CISCO Systems, 2006.
  45. ^ Report: DWDM No Match for Sonet, Mary Jander, Light Reading, 2006.
  46. ^ Stallings, William (2004). Data and Computer Communications (7th edition (intl) ed.). Pearson Prentice Hall. pp. 337–366. ISBN 0-13-183311-1 
  47. ^ MPLS is the future, but ATM hangs on, John Dix, Network World, 2002
  48. ^ How Radio Works, HowStuffWorks.com, 2006.
  49. ^ Stallings, William (2004). Data and Computer Communications (7th edition (intl) ed.). Pearson Prentice Hall. ISBN 0-13-183311-1 
  50. ^ Brian Stelter (2009年6月13日). “Changeover to Digital TV Off to a Smooth Start”. New York Times. http://www.nytimes.com/2009/06/14/business/media/14digital.html?_r=2&hp 
  51. ^ Robert E. Kahn and Vinton G. Cerf, What Is The Internet (And What Makes It Work), December 1999. (specifically see footnote xv)
  52. ^ How Internet Infrastructure Works, HowStuffWorks.com, 2007.
  53. ^ World Internet Users and Population Stats, internetworldstats.com, 19 March 2007.
  54. ^ OECD Broadband Statistics, Organisation for Economic Co-operation and Development, December 2005.
  55. ^ History of the OSI Reference Model, The TCP/IP Guide v3.0, Charles M. Kozierok, 2005.
  56. ^ Stallings, pp 683-702.
  57. ^ T. Dierks and C. Allen, The TLS Protocol Version 1.0, RFC 2246, 1999.
  58. ^ Martin, Michael (2000). Understanding the Network (The Networker's Guide to AppleTalk, IPX, and NetBIOS), SAMS Publishing, ISBN 0-7357-0977-7.
  59. ^ Ralph Droms, Resources for DHCP, November 2003.
  60. ^ Stallings, pp 500-526.
  61. ^ Stallings, pp 514-516.
  62. ^ Fiber Optic Cable Tutorial, Arc Electronics. Retrieved June, 2007.






電気通信と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「電気通信」の関連用語

電気通信のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



電気通信のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの電気通信 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS