時間依存シュレーディンガー方程式とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 時間依存シュレーディンガー方程式の意味・解説 

シュレーディンガー方程式

(時間依存シュレーディンガー方程式 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/04/05 23:16 UTC 版)

シュレーディンガー方程式(シュレーディンガーほうていしき、: Schrödinger equation)とは、物理学量子力学における基礎方程式である。その名前は、提案者であるオーストリア物理学者エルヴィン・シュレーディンガーにちなむ。1926年にシュレーディンガーは量子力学の基礎理論に関する一連の論文を提出した[1]

シュレーディンガー方程式の解は一般的に波動関数または状態関数とも呼ばれる。シュレーディンガー方程式は、ある状況の下で量子系(電子など量子力学で取り扱う対象)が取り得る量子状態を決定し、それが時間的にどう変化していくかを記述する。あるいは、波動関数を量子系の状態を表すベクトルの成分と見た場合、シュレーディンガー方程式は状態ベクトルの時間発展方程式に置き換えられる。この場合は波動関数を用いた場合と異なり物理量の表現によらないため、より一般的である。

シュレーディンガー方程式では、波動関数や状態ベクトルによって表される量子系の状態が時間とともに変化するという見方をする。この考え方はシュレーディンガー描像と呼ばれる。

分類

シュレーディンガー方程式はその形式によっていくつかの種類に分類される。

ひとつの分類は時間依存性で、時間に依存するシュレーディンガー方程式と時間に依存しないシュレーディンガー方程式がある。時間に依存するシュレーディンガー方程式: time-dependent Schrödinger equation; TDSE)は、波動関数の時間的変化を記述する方程式であり、波動関数の変化の仕方は波動関数にかかるハミルトニアンによって決定される。解析力学におけるハミルトニアンは系のエネルギーに対応する関数だったが、量子力学においてはエネルギー固有状態を決定する作用素[注 1]である。 時間に依存しないシュレーディンガー方程式: time-independent Schrödinger equation; TISE)はハミルトニアンの固有値方程式である。時間に依存しないシュレーディンガー方程式は、系のエネルギーが一定に保たれる閉じた系に対する波動関数を決定する。

シュレーディンガー方程式のもう1つの分類として、方程式の線型性がある。通常、線型なシュレーディンガー方程式は単にシュレーディンガー方程式と呼ばれる。線型なシュレーディンガー方程式は斉次方程式であるため、方程式の解となる波動関数の線型結合もまた方程式の解となる。 非線型シュレーディンガー方程式: non-linear Schrödinger equation; NLS)は、通常のシュレーディンガー方程式におけるハミルトニアンにあたる部分が波動関数自身に依存する形の方程式である。シュレーディンガー方程式に非線型性が現れるのは例えば、複数の粒子が相互作用する系について、相互作用ポテンシャルを平均場近似することにより一粒子に対するポテンシャルに置き換えることによる。相互作用ポテンシャルが求めるべき波動関数自身に依存する一体ポテンシャルとなる場合、方程式は非線型となる(詳細は例えばハートリー=フォック方程式グロス=ピタエフスキー方程式などを参照)。本項では主に線型なシュレーディンガー方程式について述べる。

時間に依存するシュレーディンガー方程式

シュレーディンガー描像では、量子系の時間的変化はその量子系の状態ベクトル波動関数がその情報を持っていると考える。量子系の状態ベクトルおよび波動関数の時間的変化は、時間に依存するシュレーディンガー方程式によって記述される。状態ベクトル |ψ(t)[注 2]に関するシュレーディンガー方程式は一般に以下のように表される。

調和振動子の時間依存型シュレーディンガー方程式の解。左: 実部(青)、虚部(赤)。右: 与えられた状況で、この関数の粒子を見つける確率分布。上 2 つは「定常状態」で、一番下は定常波では「ない」状態の例。右の列の確率密度が変化しない事から定常状態が「定常」と呼ばれる。

シュレーディンガー方程式を解くと、その系の波動関数がどのように時間発展するかがわかる。

しかしシュレーディンガー方程式は、直接的に波動関数が正確に「何であるか」を語るわけではない。量子力学の解釈は全く別問題であり、「波動関数の根底にある現実と実験結果の間にある関係とは何か」というような問題を扱う。 コペンハーゲン解釈では、波動関数は物理系の完全な情報を与える。

重要な側面は、シュレーディンガー方程式と波動関数の収縮の関係である。 最初期のコペンハーゲン解釈では、粒子は波動関数の収縮の間を「除いて」シュレーディンガー方程式に従い、波動関数の収縮の間は全く異なる動きをする。 量子デコヒーレンスの出現は、別のアプローチ(エヴェレットの多世界解釈のような)を可能にした。それらではシュレーディンガー方程式が常に満たされ、波動関数の収縮はシュレーディンガー方程式から説明される。

代表的な解

後述する時間に依存しないシュレーディンガー方程式を満たす状態ベクトル |ψ として、

V(x) = 0, つまり相互作用しない粒子(自由粒子)の波動関数。波動関数は複素数値の関数であるが、画像では波動関数の実数部分のみが曲線として描かれている。波束の大きさは粒子の位置の不確定性を表す。

シュレーディンガー方程式の具体的な形は、適当なポテンシャルを決定することで得られる。ポテンシャルは粒子に付随する基本的な変数の関数として与えられる。ただし一般にはポテンシャルの変数は物理量の演算子であり、通常の意味での関数とは異なる。ポテンシャルの変数となる物理量はたとえば粒子の位置であり、スピンである。ポテンシャルは、外界から及ぼされる相互作用と対象とする量子系の粒子間に働く相互作用の二つがある。古典論と同じく一体のポテンシャルは、多体間ポテンシャルを何らかの意味で平均化したものと考えることができる。例えば原子核および内殻電子から外殻電子に及ぼされるクーロン相互作用は、原子核や内殻電子の運動が外殻電子の運動にほとんど影響を受けないならば、原子核と内殻電子に関係するポテンシャルの変数は固定され、二体間ポテンシャルを一体のポテンシャルに置き換えることができる。多体間ポテンシャルの例として最も基本的なものは粒子間のクーロン相互作用およびスピン相互作用である。応用上では有限の井戸型ポテンシャルレナード-ジョーンズ・ポテンシャルなども利用される。

粒子系のハミルトニアンは前述のポテンシャルの他に、一般には粒子の運動エネルギーが加えられたものになる。具体的なハミルトニアンから波動関数を得るには、物理量の交換関係に従い物理量演算子の表現を決め、得られたハミルトニアンをシュレーディンガー方程式に適用し、その解を求める。

例えば以下の方程式は、位置演算子を掛け算演算子とした場合の一体のポテンシャルに対する一粒子の運動を表す。

一粒子系のシュレーディンガー方程式

波動関数の値とエネルギー固有値、ポテンシャルおよび運動エネルギーの関係。

具体例

時間に依存しないシュレーディンガー方程式に対して、磁場のない一粒子系のハミルトニアン

ド・ブロイ波が障壁にぶつかるアニメーション

ポテンシャルが一定V = V 0 の場合、シュレーディンガー方程式の解はエネルギーが古典的に許されるかどうかによって異なり、E > V 0 のときは振動解E < V 0 のとき指数解になる。振動解では粒子は古典的に許されたエネルギーを持ち、解は実際の古典的な運動に対応する。一方で指数解では粒子は古典的に許されないエネルギーを持ち、トンネル効果のため、古典的に許されない領域へも波動関数が滲むことを記述する。ポテンシャルV 0 が無限に大きい場合、運動は古典的な有限の領域に制限される。つまり、全ての解は充分遠方では指数的減少となり、エネルギー準位は、allowed energies許容準位)と呼ばれる離散集合に制限される[10]

調和振動子

古典力学(A-B)と量子力学(C-H)での調和振動子。(A-B) では、バネのついた球が前後に振動する。(C-H) は量子力学における 6 つの解である。横軸は位置、縦軸は波動関数の実数部(青)と虚数部(赤)。定常状態エネルギー固有状態は時間に依存しないシュレーディンガー方程式の解として得られる。図では C,D,E,F は定常状態だが G,H は非定常状態である。

調和振動子のシュレーディンガー方程式は

波束の時間発展の様子。一次元のステップ関数ポテンシャルの系に対するシュレーディンガー方程式の解が、位置-時間座標(3 つ目の軸は確率振幅 |Ψ|2)の断面に描かれている。粒子は青い円で透明度がその位置における粒子の確率密度に対応するように描かれている。ステップ関数ポテンシャルは点線。粒子の全エネルギーE はステップ関数の高さV よりも大きいため、透過率は反射率よりも大きい。[16]
障壁を通るトンネル効果。左から障壁を超えるために十分なエネルギーを持たない粒子がやってくる。しかし粒子が "トンネル" し障壁の反対側へ通り抜ける事がある。
粒子の位置の曖昧性を表している。これは量子力学で一定ではない。

粒子の波動性

二重スリットにおいてスクリーンに到達した電子の個数が時間変化する様子。日立製作所・外村彰らによる実験。

非相対論的なシュレーディンガー方程式は波動方程式とも呼ばれる偏微分方程式の一種である。そのためよく粒子は波として振る舞うのだと言われる。現代の多くの解釈ではこの逆に、量子状態(つまり波)が純粋な物理的実在であり、ある適切な条件の下では粒子としての性質を示すのだとされる。

二重スリット実験は、通常は波が示す、直感的には粒子と関連しない奇妙な振る舞いの例として有名である。ある場所では二つのスリットから来た波同士が打ち消し合い、別の場所では強め合うことで、複雑な干渉縞が現れる。直感的には1個の粒子のみを打ち出した時には、どちらかのスリットのみを通り両方のスリットからの寄与の重ね合わせにならないため、干渉縞は現れないように感じられる。

ところが、シュレーディンガー方程式は波動方程式であるから、一粒子のみを二重スリットに打ち出した時にも同じ干渉縞が「現れる」(左図)。なお、干渉縞が現れるためには実験を繰り返し何度も行う必要がある。このように干渉縞が現れるという事は個々の電子が「両方」のスリットを同時に通る事を示している[19][20][21]。直感と反する事ではあるが、この予言は正しく、この考えで電子回折中性子回折をよく理解でき、科学や工学で広く使われている。

回折の他に、粒子は重ね合わせ干渉の性質を示す。重ね合わせの性質によって、粒子は古典的には異なる 2 つ以上の状態を同時にとる事ができる。例えば、粒子は同時に複数のエネルギーを持つことや、異なる場所に同時にいる事ができる。二重スリットの実験の例では 2 つのスリットを同時に通ることができるのである。古典的なイメージに反する事ではあるがこの重ね合わせ状態は一つの量子状態のままである。


1 次元でのド・ブロイ波の伝播の様子。波動関数の実部が青、虚部が緑色で描かれている。粒子を位置x に見出す確率(色の透明度で描かれている)は、波のように広がっており粒子は特定の場所にいる訳ではない。波動関数が 0 よりも大きくなると曲率は負になるためいずれ減少に転じる(逆も同様)。このように正と負になる事を繰り返し、波として振る舞う。

線型性と平面波

最も単純な波動関数は平面波である:

波束の局所化のレベルが上がっている。つまり、粒子がより位置を局所化している。
プランク定数をゼロに近似したとき、粒子の位置と運動量は正確にわかるようになる。これは古典的粒子と等しい。

シュレーディンガーが要求したのは以下のようなことである: 位置がr の近くであり, 波数ベクトルがk の近くであるような波束を表す解は, k (従って速度)の広がりがr の広がりを顕著に増やすようなことがないくらいに十分に短い時間内で, 古典力学で決定される曲線を描く。

与えられたk の広がりに対して、速度の広がりはプランク定数に比例するから、プランク定数をゼロに近似したとき、古典力学での方程式は量子力学から導出されると言われる[24]。その極限がどのように取られるか、またどんな状況でかという点で細心の注意が払われる必要がある。

短波長極限はプランク定数をゼロに近似することと等価である。なぜならこれは、波束の局在性を極限まで強め, 粒子を特定の位置に局在化させることだからである(右図を参照)。ハイゼンベルクの不確定性原理を位置と運動量に対して使うと、位置の不確定性と運動量の不確定性の積は、ħ → 0に従ってゼロとなる。

カテゴリ



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「時間依存シュレーディンガー方程式」の関連用語

時間依存シュレーディンガー方程式のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



時間依存シュレーディンガー方程式のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのシュレーディンガー方程式 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS