対ポテンシャルと多体ポテンシャル
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/02/01 08:35 UTC 版)
「分子動力学法」の記事における「対ポテンシャルと多体ポテンシャル」の解説
非結合性エネルギーを表わすポテンシャル関数は、系の粒子間の相互作用全体の和として定式化される。多くの人気のある力場で採用されている最も単純な選択肢は、全ポテンシャルエネルギーが原子の対の間のエネルギー寄与の和から計算できる「対ポテンシャル」である。こういった対ポテンシャルの一例は非結合性レナード=ジョーンズ・ポテンシャルであり、ファンデルワールス力を計算するために使われる。 U ( r ) = 4 ε [ ( σ r ) 12 − ( σ r ) 6 ] {\displaystyle U(r)=4\varepsilon \left[\left({\frac {\sigma }{r}}\right)^{12}-\left({\frac {\sigma }{r}}\right)^{6}\right]} もう一つの例はイオン格子のボルン(イオン)モデルである。次式の第一項はイオンの対についてのクーロンの法則であり、第二項はパウリの排他原理によって説明される短距離反発であり、最終項は分散相互作用項である。大抵は、シミュレーションは双極子項のみを含むが、四極子項も同様に含まれることもある(バッキンガム・ポテンシャルとして知られる)。 U i j ( r i j ) = z i z j 4 π ϵ 0 1 r i j + A l exp − r i j p l + C l r i j − n l + ⋯ {\displaystyle U_{ij}(r_{ij})={\frac {z_{i}z_{j}}{4\pi \epsilon _{0}}}{\frac {1}{r_{ij}}}+A_{l}\exp {\frac {-r_{ij}}{p_{l}}}+C_{l}r_{ij}^{-n_{l}}+\cdots } 多体ポテンシャルにおいて、ポテンシャルエネルギーは互いに相互作用する3つ以上の粒子の効果を含む。対ポテンシャルを用いたシミュレーションでは、系の包括的な相互作用も存在するが、対ポテンシャル項を通じてのみ生じる。多体ポテンシャルにおいて、ポテンシャルエネルギーは原子の対全体の和によって表わすことができない。これは、これらの相互作用が高次項の組合せとして明確に計算されるためである。統計的見方では、変数間の依存性は一般に自由度の対ごとの積のみを用いて表現することはできない。例えば、炭素、ケイ素、ゲルマニウムのシミュレーションに元々使われ、その他の幅広い材料に対しても用いられているターソフ・ポテンシャルは3個の原子の群についての和を含む。このポテンシャルでは、原子間の角度が重要な要素である。その他の例としては、原子挿入法(EAM)や強結合二次モーメント近似(TBSMA)ポテンシャルがある。TBSMAポテンシャルでは、原子の領域における状態の電子密度は周囲の原子からの寄与の和から計算され、ポテンシャルエネルギー寄与はこの和の関数である。
※この「対ポテンシャルと多体ポテンシャル」の解説は、「分子動力学法」の解説の一部です。
「対ポテンシャルと多体ポテンシャル」を含む「分子動力学法」の記事については、「分子動力学法」の概要を参照ください。
- 対ポテンシャルと多体ポテンシャルのページへのリンク