安定性との関係
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/05/29 17:38 UTC 版)
飛行性の概念を理解するためには、航空機の安定性について先に理解する必要がある。安定性は航空機がトリムがとれている状態において定義され、定常時の飛行からそれるような釣り合いのとれていない状態においては定義されない。もし安定性がある場合、航空機が擾乱にあっても安定性がトリム状態に戻ろうとする傾向を示す。航空機がトリム状態に戻ろうとしているのなら、統計的に安定である、ということができる。オーバーシュートせずにトリム状態に戻ろうとしているとき、その状態を減衰と呼ぶ。トリム状態からオーバーシュートする場合、前後に振動する。この振動に減衰がある場合、このふるまいのことを減衰振動とよび、動的に安定である、と言う。一方、ふるまいが増幅されていく場合、この航空機は動的に不安定である、という。 飛行機の安定性の理論はG.H.Bryan(イギリス、1904)によって始められた。この理論は現在でも学生に教えられているものと同等のもので、Bryanはライト兄弟の初飛行を知らずにこの理論を完成したところが注目に値すべきである。この理論の複雑さと実際に使うときには退屈な計算が必要なことから、航空機設計に携わるものが使うことは少なかった。実際には、ちゃんと飛ぶためには、パイロットがいない航空機が動的に安定になる必要があった。ライト兄弟が飛ばした飛行機、その後に登場した飛行機の多くは安定ではなかったが、試行錯誤を繰り返し設計者たちは飛行性基準を満たす航空機を作ることができるようになった。しかし多くの他の飛行機は低いレベルの飛行性しか持っていなかったため、墜落して終わることがたびたびあった。 近年ではフライ・バイ・ワイヤや各種の高揚力装置や推力偏向の導入により、かつては実現不可能だった飛行性を持つ機体もある。
※この「安定性との関係」の解説は、「飛行性」の解説の一部です。
「安定性との関係」を含む「飛行性」の記事については、「飛行性」の概要を参照ください。
- 安定性との関係のページへのリンク