基質の認識
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/02/27 08:30 UTC 版)
APC/Cの基質は、APC/Cによる同定を可能にする認識配列を有している。最も一般的にみられる配列は、D-box(destruction box)として知られている。APC/Cは、ユビキチン転移の共有結合性の中間輸送体となるのではなく、E2ユビキチン結合酵素とD-boxとを結び付ける。D-boxはRXXLXXXXN(Rはアルギニン、Xは任意のアミノ酸、Lはロイシン、Nはアスパラギン)に類似した配列を持っている。他の重要なモチーフとしてはKEN-boxがあり、その配列はKENXXXN(Kはリジン、Eはグルタミン酸)に類似したものである。KEN-boxの最後のアミノ酸の位置はきわめて多様である。これらの配列の変異はin vivoでのタンパク質分解を阻害するものの、タンパク質がどのようにAPC/Cの標的となっているのかについて未解明の点は多い。 Cdc20とCdh1はいったんApc/Cに結合すると、さまざまな基質のD-boxやKEN-boxの受容体として機能する。Kraftらは、基質のD-boxがAPC/C活性化因子の高保存性領域であるWD40リピートプロペラ領域に直接結合することを示した。APC/Cの基質の多くはD-boxとKEN-boxの双方を含んでいる。APC/CCdc20またはAPC/CCdh1によるユビキチン化は双方の配列に依存するが、一部の基質はD-boxまたはKEN-boxのいずれかのみを1つまたは複数コピー含んでいる。2つの異なる分解配列を持っていることでAPC/Cの高い基質特異性がもたらされているが、APC/CCdc20はよりD-box依存的であり、APC/CCdh1はよりKEN-boxに依存的である。例えば、APC/CCdh1はTome-1やSororinといったKEN-boxのみを含む基質をユビキチン化することができる。Cdh1プロペラの保存性領域はCdc20のものよりもかなり大きく、より広い基質特異性をもたらしていることは特筆すべきである。このことは、APC/CCdh1はKEN-boxを含む基質の分解も活性化するという事実と一致する。D-boxはタンパク質の分解も促進し、D-boxの直近に存在するリジン残基がユビキチン化の標的となる。D-boxのすぐC末端側のリジン残基がユビキチンの受容部位として機能する。 Cdc20とCdh1はD-boxとKEN-boxの受容体として機能するかもしれないが、これらの活性化因子と基質の間の親和性は低く、活性化因子単独でAPC/CCdc20やAPC/CCdh1と基質との高親和性結合がもたらされているとは考えにくい。したがって、Apc10のようなAPC/Cのコアとなるサブユニットも同様に基質との結合に寄与していると考えられる。Apc10/Doc1サブユニットを欠失したAPC/Cの発現系では、Clb2はAPCΔdoc1–Cdh1へ結合することができないが、精製したDoc1を添加することで基質結合能が回復する。
※この「基質の認識」の解説は、「後期促進複合体」の解説の一部です。
「基質の認識」を含む「後期促進複合体」の記事については、「後期促進複合体」の概要を参照ください。
- 基質の認識のページへのリンク