二重化によるフォールトトレラントシステム
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/03/11 21:09 UTC 版)
「フォールトトレラントシステム」の記事における「二重化によるフォールトトレラントシステム」の解説
二重化(多重化、冗長化)によるフォールトトレラント性は三つに分類される。 レプリケーション:同じシステムの複製を複数用意し、それら全部に同じ処理を並列に実行させ、定足数を満足した結果を正しい結果として採用する。 冗長性:同じシステムの複製を複数用意し、障害が発生したら予備のシステムに切り替える。 多様性:同じ仕様の異なる実装のシステムを複数用意し、レプリケーションのようにそれを運用する。この場合、各システムが同じ障害を発生することがないと考えられる。 RAIDは冗長性を活用したフォールトトレラントな記憶装置の例である。 ロックステップ方式のフォールトトレラントマシンは各部分を多重化して並列して動作させる。多重化された各部分はどの時点で見ても全く同じ状態でなければならない。同じ入力を与えた場合に同じ出力が得られることが期待される。多重化部分の出力は多数決回路に集められ比較される。各部品を二重化したマシンはdual modular redundant(DMR)と呼ばれる。この場合、多数決回路は結果が異なっているということしか分からないので、復旧は別の方法で行う必要がある。各部品を三重化したマシンはtriple modular redundant(TMR)と呼ばれる。この場合の多数決回路は比較結果が2対1になったときにエラーを判定するので、正しい(と思われる)結果を出力することができ、エラーと判定された結果を捨てることが出来る。その後、エラーを発生させた複製部品は故障したものとみなし、多数決回路はDMR状態に移行する。このモデルはもっと多くの複製についても当てはめることが出来る。 ロックステップ方式のフォールトトレラントマシンは簡単に完全同期させることができ、各複製部品は同じクロックで同期して動作する。もちろん、各複製をクロック同期させないロックステップシステムも構築可能である(多数決回路で待ち合わせる)。(訳注:ただし、クロック同期しない場合、故障によって出力を多数決回路に送れなくなった部品をどう扱うかが問題となる。) 複製を同期させるには個々の内部状態が一致していなければならない。リセット状態などの同じ内部状態からいっせいに動作を開始するのである。一方で、複製間で状態をコピーするという方法もある。 DMRの一種にpair-and-spareがある。ふたつの複製部品がロックステップで同じ処理を行い、多数決回路が相異を検出したらエラー信号を出力する。もうひとつの二重化システムが全く同じ処理をしていて、ふたつの二重化システムの出力を比較してエラーとなっていない方を採用する。pair-and-spare では云わば四重化であって TMR よりも冗長だが、商用システムで採用された例もある。
※この「二重化によるフォールトトレラントシステム」の解説は、「フォールトトレラントシステム」の解説の一部です。
「二重化によるフォールトトレラントシステム」を含む「フォールトトレラントシステム」の記事については、「フォールトトレラントシステム」の概要を参照ください。
- 二重化によるフォールトトレラントシステムのページへのリンク