ダランベール作用素
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/03/03 14:55 UTC 版)
「ラプラス作用素」の記事における「ダランベール作用素」の解説
ラプラシアンを適当な仕方によって非ユークリッド空間に一般化することができて、それには楕円型、双曲型、超双曲型(英語版)などが可能である。 ミンコフスキー空間におけるラプラス=ベルトラミ作用素はダランベール作用素 ◻ = 1 c 2 ∂ 2 ∂ t 2 − ∂ 2 ∂ x 2 − ∂ 2 ∂ y 2 − ∂ 2 ∂ z 2 {\displaystyle \square ={\frac {1}{c^{2}}}{\partial ^{2} \over \partial t^{2}}-{\partial ^{2} \over \partial x^{2}}-{\partial ^{2} \over \partial y^{2}}-{\partial ^{2} \over \partial z^{2}}} となる。これは考える空間上の等長変換群のもとで不変な微分作用素であるという意味においてラプラス作用素の一般化となるものであり、時間不変函数へ制限する限りにおいてはラプラス作用素に帰着される。ここでは計量の符号を作用素の空間成分に関して負符号を許すようにしてあることに注意(高エネルギー粒子物理学ではこう仮定するのが普通)。ダランベール作用素は波動方程式に現れる微分作用素であるという理由で波動作用素と呼ばれることもある。これはまたクライン=ゴルドン方程式(質量の無い場合には波動方程式に帰着される)の成分でもある。 計量における余分な因子 c は、物理学において空間と時間を異なる単位で測っている場合に必要となるものである(例えば同様のことは x-方向をメートルで y-方向をセンチメートルで測ったりするような場合にも出てくる)。実際、理論物理学では方程式を簡単にする目的で、自然単位系などの単位系のもと c = 1 として扱うのがふつうである。
※この「ダランベール作用素」の解説は、「ラプラス作用素」の解説の一部です。
「ダランベール作用素」を含む「ラプラス作用素」の記事については、「ラプラス作用素」の概要を参照ください。
- ダランベール作用素のページへのリンク