ラプラシアンとは? わかりやすく解説

ラプラス作用素

(ラプラシアン から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/01/12 01:54 UTC 版)

数学におけるラプラス作用素(ラプラスさようそ、: Laplace operator)あるいはラプラシアン: Laplacian)は、ユークリッド空間上の函数勾配発散として与えられる微分作用素である。記号では ∇·∇, 2, あるいは で表されるのが普通である。函数 f の点 p におけるラプラシアン f(p) は(次元に依存する定数の違いを除いて)点 p を中心とする球面を半径が増大するように動かすときの f(p) から得られる平均値になっている。直交座標系においては、ラプラシアンは各独立変数に関する函数の二階(非混合)偏導函数の和として与えられ、またほかに円筒座標系球座標系などの座標系においても有用な表示を持つ。

ラプラス作用素の名称は、天体力学の研究に同作用素を最初に用いたフランス人数学者のピエール=シモン・ド・ラプラス (1749–1827) に因んでいる。同作用素は与えられた重力ポテンシャルに適用すると質量密度の定数倍を与える。現在ではラプラス方程式と呼ばれる方程式 f = 0 の解は調和函数と呼ばれ、自由空間において可能な重力場を表現するものである。

微分方程式においてラプラス作用素は電気ポテンシャル重力ポテンシャル流体拡散方程式波の伝搬量子力学といった、多くの物理現象を記述するのに現れる。ラプラシアンは、函数の勾配フロー流束密度を表す。

定義

ラプラス作用素はn 次元ユークリッド空間上の函数 f勾配 f発散 ∇· として定義される二階の微分作用素である。つまり、f二回微分可能実数値函数ならば f のラプラシアンは


ラプラシアン

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/02 02:00 UTC 版)

二階導関数」の記事における「ラプラシアン」の解説

詳細は「ラプラス作用素」を参照 もう1つ高次元への一般化として、ラプラシアンがある。これは ∇ 2 f = ∂ 2 f ∂ x 2 +2 f ∂ y 2 +2 fz 2 {\displaystyle \nabla ^{2}f={\frac {\partial ^{2}f}{\partial x^{2}}}+{\frac {\partial ^{2}f}{\partial y^{2}}}+{\frac {\partial ^{2}f}{\partial z^{2}}}} として定義される微分作用素 ∇ 2 {\displaystyle \nabla ^{2}} (あるいは Δ {\displaystyle \Delta } )である。 函数のラプラシアンは、勾配発散ヘッセ行列の跡に等しい。

※この「ラプラシアン」の解説は、「二階導関数」の解説の一部です。
「ラプラシアン」を含む「二階導関数」の記事については、「二階導関数」の概要を参照ください。

ウィキペディア小見出し辞書の「ラプラシアン」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「ラプラシアン」の関連用語

ラプラシアンのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ラプラシアンのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのラプラス作用素 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの二階導関数 (改訂履歴)、円柱座標変換 (改訂履歴)、共変微分 (改訂履歴)、マギステルス・バッドトリップ (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS