信頼性とは?

Weblio 辞書 > 辞書・百科事典 > 活用形辞書 > 信頼性の意味・解説 

信頼性

日本語活用形辞書はプログラムで機械的に活用形や説明を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ

信頼性

読み方しんらいせい
別名:リライアビリティ
【英】Reliability

信頼性とは、定められた動作環境下において、コンピュータシステム要求された機能安定して果たすことができる能力のことである。

信頼性が高いシステムとは、一般的に不具合障害発生する確率どれだけ抑えられるかで決まってくる。その際にしばしば指標として用いられるのは、ある機器システム故障するまでの、平均的時間を表すMTBF平均故障間隔)である。

また、信頼性は稼働率の高さ、メンテナンスしやすさデータ保全性の高さ、セキュリティの高さといった、より広い意味で捉えられることもある。


信頼性

読み方しんらいせい
【英】:reliability

概要

信頼性という用語は日常生活において自然に使用されているが, 専門用語としての定義は日本工業規格JIS Z 8115信頼性用語により定性的次のように与えられる.「アイテム与えられた条件規定の期間中, 要求された機能を果たすことができる性質」. ここでアイテムとは「信頼性の対象となるシステム(系), サブシステム, 機器, 装置, 構成品, 部品, 素子, 要素などの総称またはいずれか」である.

詳説

 部品, 機械故障日常茶飯事のことであり, 不可避なことである. 機械, システムなどの動作故障特性について扱う分野が信頼性理論 [1, 2, 3] である. 本項においては信頼性 (reliability)について一般的に述べる. より詳しい項目は以下で解説する.

 信頼性用語は日本工業規格 (JIS) により定められているので, その一部抜粋する.


定義1 アイテム(item)とは「信頼性の対象となるシステム (系) , サブシステム, 機器, 装置, 構成品, 部品, 素子, 要素などの総称またはいずれか」である. システムとは「所定任務達成するために選定され, 配列され, 互いに連係して動作する一連のアイテム (ハードウェア, ソフトウェア, 人間要素) の組合せ」である.


 これらの用語は上位アイテム (システム) から下位アイテム (要素) まで階層的な意味で適宜使用される.

 システム (アイテム) が果たすべき仕事任務であり, アイテム間の機能的物理的相互関連インターフェースである. アイテム周囲条件環境である. そのとき信頼度 (reliability) は次のように定義される.


定義2 信頼度とは「アイテム与えられた条件規定の期間中, 要求された機能を果たす確率」である.


アイテム規定機能を失うことは故障であり, 故障状態の形式による分類故障モードであり, 例えば, 断線, 短絡, 折損, 摩耗, 特性劣化などがある.


定義3 初期故障とは「使用開始後の比較早い時期に, 設計製造上の欠点, 使用環境との不適合などによって起こる故障」である. 偶発故障とは「初期故障期間を過ぎ摩耗故障期間に至る以前時期に, 偶発的に起こる故障」である. 摩耗故障とは「疲労摩耗老化現象などによって時間とともに故障率大きくなる故障」である.


 以下では, 確率変数 X\, 連続形であると仮定する. 非負の X\, はあるアイテム故障が起こるまでの寿命時間 (lifetime) を表す確率変数とする. 寿命分布 (lifetime distribution) を



F(t) = \mathrm{Pr}\{ X \le t \} \ \ \ \ \ (t \ge 0)
\,


としよう. F(t)\, 時刻 t\, までに故障する確率を表す. 確率変数 X\, 残存確率



R(t) = 1 - F(t) = \mathrm{Pr}\{ X > t \} \ \ \ \ \ (t \ge 0)
\,


信頼度関数よばれる. R(t)\, アイテム時刻 t\, 機能している確率を表す. 確率変数 X\, 密度存在すると仮定し,



f(t) = \frac{{\rm d} F(t)}{{\rm d}t} \ \ \ \ \ ( t \ge 0)
\,


と表す. 故障率 (failure rate) あるいはハザード率 (hazard rate) は R(t) > 0\, 仮定して



r(t) = \frac{f(t)}{R(t)} \ \ \ \ \ (t \ge 0)
\,


と定義される. ここで,



r(t) {\rm d}t = \Pr\{ t < X \le t + {\rm d}t | X > t\} = \frac{F(t+{\rm d}t) - F(t)}{R(t)}
\,


であることに注意すれば, r(t) {\rm d}t\, アイテム時刻 t\, 故障ていないという条件の下で, 時間区間 (t, t+{\rm d}t]\, 故障する条件付き確率を表す.

 F(0) = 0\, (すなわち R(0) = 1\, ) と仮定すると



r(t) = \frac{-\frac{{\rm d}R(t)}{{\rm d}t}}{R(t)}
\,


となるから, 初期条件 R(0)=1\, の下でこの微分方程式を解いて



R(t) = \exp \left[ - \int_0^t r(x) {\rm d}x \right]
\,


となる. この R(t)\, 用いて, 分布および密度関数



F(t) = 1 - \exp \left[ - \int_0^t r(x) {\rm d}x \right]
\,



f(t) = r(t) \exp \left[ - \int_0^t r(x) {\rm d}x \right]
\,


書くことができる. したがって, 分布, 密度関数および信頼度いずれも故障率 r(t)\, 用いて書き直すことができる. 特に, \textstyle \int_0^t r(x) {\rm d}x\, 累積ハザード関数あるいはハザード関数よばれる.

 一般に, アイテム時間経過とともに劣化する. この劣化する概念エージング (aging) とよばれる. エージング故障率増減によって定義される.


定義4 故障率r(t)\, が非減少 (増加あるいは一定) 関数ならば, 寿命時間分布は, \rm{IFR} \, (increasing failure rate), 一定関数ならば, \rm{CFR}\, (constant failure rate), 非増加 (減少あるいは一定) 関数ならば, \rm{DFR}\, (decreasing failure rate)とよばれる.

 一般に, 確率順序 (stochastic order) は次のように定義される.

定義5 X\, および Y\, は2つの確率変数とする. あらゆる -\infty < t < \infty\, に対し



\Pr\{ X > t \} \le \Pr\{ Y > t \}
\,


ならば, X\, Y\, より"確率的に小さい" (X \le_{\rm st} Y\, で表す) という. あるいは, X \le_{\rm st} Y\, あらゆる -\infty < t < \infty\, に対し,



\Pr \{ X \le t \} \ge \Pr\{ Y \le t \}
\,


同等である. さて, t \ge 0\, に対して [T - t | T > t]\, T > t\, 条件の下での条件付き確率変数とする. T\, IFR であることは, あらゆる t \le t'\, に対し,



[T - t | T > t] \ge_{\rm st} [T - t' | T > t']
\,


同等である. DFR についても不等号反対にすればよい. このようにして, エージングのより一般的な概念確率順序によって定義できる. 詳しくは Shaked and Shanthikumar [4] 参照.



参考文献

[1] R. E. Barlow and F. Proschan, Mathematical Theory of Reliability, SIAM, Philadelphia, PA, 1996.

[2] R. E. Barlow and F. Proschan, Statistical Theory of Reliability and Life Testing, To Begin With, c/o Gordon Pledger, 1142 Hornell Drive, Silver Spring, MD 20904, 1981.

[3] R. E. Barlow, Engineering Reliability, SIAM, Philadelphia, PA, 1998.

[4] M. Shaked and J. G. Shanthikumar, Reliability and Maintainability, in Stochastic Models, D. P. Heyman and M. J. Sobel, eds., North-Holland, 1990. (邦訳, 伊理・今野刀根監訳, 「確率モデルハンドブック」, 朝倉書店).


信頼性

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2017/03/16 13:11 UTC 版)

信頼性(しんらいせい、 : reliability)は、JIS-Z8115:2000『信頼性用語 (Glossary of Terms Used in Reliablity)』[1] において、「アイテムが与えられた条件で規定の期間中、要求された機能を果たすことができる性質」と定義される[2]。「一定の条件下で、安定して期待される役割を果たすことのできる能力」と定義されることもある。


  1. ^ JIS Z 8115:2000 デイペンダビリティ(信頼性)用語”. kikakurui.com. 2014年2月24日閲覧。
  2. ^ システムの信頼性(静岡理工科大学 総合情報学部 菅沼ホーム)
  3. ^ : reliability
  4. ^ 信頼度の意味するもの(原 宣一:宇宙先端活動研究会誌掲載論文、宇宙先端 第11巻 第1号(1995年1月号))
  5. ^ : failure rate
  6. ^ : mean time between failures
  7. ^ : mean time to failures
  8. ^ : mean time to repair
  9. ^ : availability
  10. ^ : length of operating period


「信頼性」の続きの解説一覧




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

カテゴリ一覧

全て

ビジネス

業界用語

コンピュータ

電車

自動車・バイク

工学

建築・不動産

学問

文化

生活

ヘルスケア

趣味

スポーツ

生物

食品

人名

方言

辞書・百科事典

すべての辞書の索引

「信頼性」の関連用語

信頼性のお隣キーワード

   

英語⇒日本語
日本語⇒英語
   
検索ランキング

画像から探す

Galaxy Active neo

HUAWEI P9

2007 Microsoft Office system

Kindle App for iPad

Xperia XZ SO-01J

TENORI-ON

Microsoft Wireless Display Adapter

Adobe FrameMaker





信頼性のページの著作権
Weblio 辞書情報提供元は参加元一覧にて確認できます。

  
IT用語辞典バイナリIT用語辞典バイナリ
Copyright © 2005-2017 Weblio 辞書 IT用語辞典バイナリさくいん。 この記事は、IT用語辞典バイナリ信頼性の記事を利用しております。
日本オペレーションズ・リサーチ学会日本オペレーションズ・リサーチ学会
Copyright (C) 2017 (社)日本オペレーションズ・リサーチ学会 All rights reserved.
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの信頼性 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2017 Weblio RSS