Point at infinityとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > Point at infinityの意味・解説 

無限遠点

(Point at infinity から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/03/19 07:38 UTC 版)

ナビゲーションに移動 検索に移動

無限遠点(むげんえんてん、point at infinity)とは、限りなく遠いところ(無限遠)にある点のことである。日常的な意味の空間を考えている限り無限遠点は仮想的な概念でしかないが、無限遠点を実在の点とみなせるように空間概念を一般化することができる。そのようにすることで理論的な見通しが立てやすくなったり、空間概念の応用の幅が拡がったりする。

例えば、通常、平面上の二直線の位置関係は一点で交わるか平行であるかのどちらかであるとされている。これを、平行な二直線は無限遠点で交わるのだと考えることにすると、平面上の二直線は必ず一点で交わるという簡明な性質が得られることになる。(この例について、詳しくは非ユークリッド幾何学などを参照のこと)

ユークリッド平面上の互いに平行な 2 直線の交点のことである。厳密にはこの交点はユークリッド平面の中には存在しないから、無限遠点はユークリッド平面の外に存在する。 無限遠点の全体は無限遠直線を描く。

厳密な定義

まず、実平面(ユークリッド平面)上の点の斉次座標を定義する。三つの実数の組 [x : y : z] で表し、 [x'  : y'  : z' ] = [λx : λy : λz] (λ ∈ R) となるような組 [x'  : y'  : z' ] は全て [x : y : z] と同じものであると見なそう。

このとき、三つ組 [x : y : z] はその比 x : y : z = x/z : y/z : 1 によって決まるから、平面上の点 (a, b) と三つ組 [a : b : 1] を一対一に対応付けることができる。これを平面上の点の斉次座標とよぶ。 これはつまり、三次元空間における直線を別の平面の点と見ていると考えることもできる。

P2(R) = {[x : y : z] | x, y, zR}

と書いて、実射影平面と呼ぶ。すると、上で述べたことは 実平面 R2 は実射影平面 P2(R) に埋め込めるということに他ならない。このとき、P2(R) における R2 の補空間

l := P2(R)
リーマン球面は、複素平面で包んだ球面として視覚化できる。

一般に、n 次元のユークリッド空間に対し、斉次座標の方法により、空間外の点を加えてn 次元実射影空間 Pn(R)を構成することができる。n次元実射影空間は、n次元球面とは同位相ではないが、n次元球面は、n次元実射影空間の二重被覆である。したがって、球面と同様、射影空間もリーマン幾何学の一つのモデルを与える。射影空間の直線とは、Rn 上の直線の両端を無限遠点で結んで得られるが、これは球面における大円(球の中心を通る平面と球面との交線)に相当し、球面上の大円が2点で交わるように、射影空間上の任意の二つの直線は一点で交わる。特にユークリッド空間上での平行線は無限遠空間上で交わる。

さらに、底空間を実数直線 R から複素数平面 C に取り替えたn 次元複素射影空間 Pn(C)、あるいはもっと一般に K 上の射影空間 Pn(K) などがある。

例えば、複素直線(複素数平面C に一点 {∞} を加えた空間は(2 次元の)球面と同相であり、リーマン球面と呼ばれ、 P(C) と書かれる。(次数を明示して P1(C) と書かれることもある。)

リーマン球面は、複素射影直線であり、実射影平面P2(R) とは位相が異なる。

関連項目


「Point at infinity」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

Point at infinityのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



Point at infinityのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの無限遠点 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS