電圧レベル
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/07 20:57 UTC 版)
デジタル回路では2つの電圧レベルを、二進数または論理レベルの「0」と「1」を表すために使う。正論理(アクティブ・ハイ)では、Lowは二進数「0」、Highは二進数「1」を表し、負論理(アクティブ・ロー)では逆の意味に使われる。たとえば、0から1.5ボルトは論理0、3.5から5ボルトは論理1というようになる。1.5から3.5ボルトの間はスレッショルド・レベルと呼ばれる論理遷移時以外では禁止された電圧領域であり、HighとLowの入力の区別がつかないために動作の保証が得られなくなる。論理遷移の期間というのは、通常は過渡的な現象であり、ほとんどの回路は純粋な抵抗回路ではないので電圧レベルがすぐに変化しないことによって起こる。このような異常状態を検知できる論理回路もあるが、多くの場合、後段の回路では前段の回路での遷移によって出力を変化させる前に前段の遷移が終了しHigh又はLowに安定するが、前段の回路での遷移に時間が掛かれば、後段回路では入力をHigh又はLowのいずれかとして解釈する。 CMOSによるデジタル回路の場合、その内部構造の都合上、この異常状態にある間は回路が大量の電力を消費してしまう。このため、異常状態を長く継続させてしまうと発熱により素子が破壊されるため、異常状態の継続を避ける回路上の工夫が必要となる。 一方、波形の立ち上がりと立ち下がりで論理遷移の値を意図的に異なる値とすること(ヒステリシス、履歴現象)で異常状態を回避する方法があり、シュミットトリガと呼ばれる。抵抗器の接続により容易に実現可能であるほか、専用の汎用ロジックICもある。 二値論理レベルの例回路素子Lowの電圧Highの電圧CMOS 0 - 0.3Vdd 0.7Vdd - Vdd TTL 0 - 0.8V 2V - Vcc VddとVccは電源電圧を意味する。TTLの電源電圧の許容範囲は4.75-5.25Vである。 電源電圧が同じCMOSとTTLが同一回路上に混在している場合、CMOSの出力をTTLに入力することは問題ないが、その逆はTTLのHレベル出力電圧の下限がCMOSのHレベル入力電圧の下限を満たさないため、誤動作する可能性がある。このようなときは、TTLの出力をプルアップするなどの処理が必要となる。 初期のデジタル回路では、シリコン基板上へのトランジスタの形成の制限によりPMOS、又はNMOSにより回路内部を構成していた。この場合、入力がLowの時にはあまり電力を消費しないが入力がHighの時には大きく電力を消費する、又はその逆の特性を持つため、この都合に合わせてアクティブ・ハイで論理回路を設計するか、アクティブ・ローで論理回路を設計するかが消費電力削減には重要な意味を持っていた。
※この「電圧レベル」の解説は、「デジタル回路」の解説の一部です。
「電圧レベル」を含む「デジタル回路」の記事については、「デジタル回路」の概要を参照ください。
- 電圧レベルのページへのリンク