近代ヨーロッパ数学(西暦1400〜1600年頃)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/07/22 22:40 UTC 版)
「数学史」の記事における「近代ヨーロッパ数学(西暦1400〜1600年頃)」の解説
ルネサンス初期のヨーロッパでは、数学はまだローマ数字を使用した扱いにくい記法に制限され、記号を使用せずに単語で関係を説明していた:プラス記号、等号、未知数を示す x {\displaystyle x} は使われなかった。 16世紀末までに、特にレギオモンタヌス(1436年-1476年)とフランソワ・ビエト(1540年-1603年)の貢献により、数学は現在使用される記法と相違の少ないインド・アラビア数字を使用して記述されるようになった。 16世紀のヨーロッパの数学者は、今日知られているように、他の世界に先例の無い進歩を始めた。その最初は三次関数の一般解法であり、一般に1510年頃のシピオーネ・デル・フェッロの功績とされているが、最初の出版はニュルンベルクのヨハネス・ペトレイアスによるジェロラモ・カルダーノの『偉大なる術』であり、これにはカルダーノの弟子ルドヴィコ・フェラーリによる四次方程式の一般解法も含まれていた。 この時点から、数学の発展は迅速となり、同時代の自然科学における進歩に貢献した。この進歩は印刷の発展に大いに支援された。最初に出版された数学の本は1472年のゲオルク・プールバッハの『惑星の新理論』であり、商業算術の本である1478年の『トレヴィーゾ算術書』が続き、最初の数学書であるエウクレイデスのユークリッド原論は1482年にラトドルトにより出版された。 航行の要求と広範囲に及ぶ正確な地図の必要性の増加を動機とし、三角法が数学の主要な部門となった。ピティスクス (Bartholomaeus Pitiscus) がこの語を、1595年に出版した『三角法』(Trigonometria) で最初に使用した。レギオモンタヌスの正弦および余弦の表は1533年に出版された。
※この「近代ヨーロッパ数学(西暦1400〜1600年頃)」の解説は、「数学史」の解説の一部です。
「近代ヨーロッパ数学(西暦1400〜1600年頃)」を含む「数学史」の記事については、「数学史」の概要を参照ください。
- 近代ヨーロッパ数学のページへのリンク