漸近公式
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/03/07 06:59 UTC 版)
後述のように、エアリー函数は複素数平面上へ延長することができて整函数を与える。そのエアリー函数の偏角 arg(z) が一定値を保ったまま |z| を無限大へ飛ばすときの漸近挙動は arg(z) に依存して決まる(これをストークス現象(英語版)と言う)。|arg(z)| < π のとき、Ai(z) に対して以下の漸近公式 Ai ( z ) ∼ e − 2 3 z 3 2 2 π z 1 4 [ ∑ n = 0 ∞ ( − 1 ) n Γ ( n + 5 6 ) Γ ( n + 1 6 ) ( 3 4 ) n 2 π n ! z 3 n / 2 ] {\displaystyle \operatorname {Ai} (z)\sim {\dfrac {e^{-{\frac {2}{3}}z^{\frac {3}{2}}}}{2{\sqrt {\pi }}\,z^{\frac {1}{4}}}}\left[\sum _{n=0}^{\infty }{\dfrac {(-1)^{n}\Gamma (n+{\frac {5}{6}})\Gamma (n+{\frac {1}{6}})\left({\frac {3}{4}}\right)^{n}}{2\pi n!z^{3n/2}}}\right]} を得る。Bi(z) に対しても同様の漸近公式 Bi ( z ) ∼ e 2 3 z 3 2 π z 1 4 [ ∑ n = 0 ∞ Γ ( n + 5 6 ) Γ ( n + 1 6 ) ( 3 4 ) n 2 π n ! z 3 n / 2 ] {\displaystyle \operatorname {Bi} (z)\sim {\frac {e^{{\frac {2}{3}}z^{\frac {3}{2}}}}{{\sqrt {\pi }}\,z^{\frac {1}{4}}}}\left[\sum _{n=0}^{\infty }{\dfrac {\Gamma (n+{\frac {5}{6}})\Gamma (n+{\frac {1}{6}})\left({\frac {3}{4}}\right)^{n}}{2\pi n!z^{3n/2}}}\right]} 存在するが |arg(z)| < π/3 でしか適用できない。 π/3 < |arg(z)| < π のときのより正確な Ai(z) および Bi(z) に対する公式、あるいは同じことだが |arg(z)| < 2π/3 だが零でないときの Ai(−z) および Bi(−z) の漸近近似が A i ( − z ) ∼ sin ( 2 3 z 3 2 + π 4 ) π z 1 4 [ ∑ n = 0 ∞ ( − 1 ) n Γ ( 2 n + 5 6 ) Γ ( 2 n + 1 6 ) ( 3 4 ) 2 n 2 π ( 2 n ) ! z 3 n ] − cos ( 2 3 z 3 2 + π 4 ) π z 1 4 [ ∑ n = 0 ∞ ( − 1 ) n Γ ( 2 n + 11 6 ) Γ ( 2 n + 7 6 ) ( 3 4 ) 2 n + 1 2 π ( 2 n + 1 ) ! z 3 n + 3 / 2 ] B i ( − z ) ∼ cos ( 2 3 z 3 2 + π 4 ) π z 1 4 [ ∑ n = 0 ∞ ( − 1 ) n Γ ( 2 n + 5 6 ) Γ ( 2 n + 1 6 ) ( 3 4 ) 2 n 2 π ( 2 n ) ! z 3 n ] + sin ( 2 3 z 3 2 + π 4 ) π z 1 4 [ ∑ n = 0 ∞ ( − 1 ) n Γ ( 2 n + 11 6 ) Γ ( 2 n + 7 6 ) ( 3 4 ) 2 n + 1 2 π ( 2 n + 1 ) ! z 3 n + 3 / 2 ] {\displaystyle {\begin{aligned}\mathrm {Ai} (-z)\sim &{}{\frac {\sin \left({\frac {2}{3}}z^{\frac {3}{2}}+{\frac {\pi }{4}}\right)}{{\sqrt {\pi }}\,z^{\frac {1}{4}}}}\left[\sum _{n=0}^{\infty }{\dfrac {(-1)^{n}\Gamma (2n+{\frac {5}{6}})\Gamma (2n+{\frac {1}{6}})\left({\frac {3}{4}}\right)^{2n}}{2\pi (2n)!z^{3n}}}\right]\\[6pt]&{}-{\frac {\cos \left({\frac {2}{3}}z^{\frac {3}{2}}+{\frac {\pi }{4}}\right)}{{\sqrt {\pi }}\,z^{\frac {1}{4}}}}\left[\sum _{n=0}^{\infty }{\dfrac {(-1)^{n}\Gamma (2n+{\frac {11}{6}})\Gamma (2n+{\frac {7}{6}})\left({\frac {3}{4}}\right)^{2n+1}}{2\pi (2n+1)!z^{3n+3/2}}}\right]\\[6pt]\mathrm {Bi} (-z)\sim &{}{\frac {\cos \left({\frac {2}{3}}z^{\frac {3}{2}}+{\frac {\pi }{4}}\right)}{{\sqrt {\pi }}\,z^{\frac {1}{4}}}}\left[\sum _{n=0}^{\infty }{\dfrac {(-1)^{n}\Gamma (2n+{\frac {5}{6}})\Gamma (2n+{\frac {1}{6}})\left({\frac {3}{4}}\right)^{2n}}{2\pi (2n)!z^{3n}}}\right]\\[6pt]&{}+{\frac {\sin \left({\frac {2}{3}}z^{\frac {3}{2}}+{\frac {\pi }{4}}\right)}{{\sqrt {\pi }}\,z^{\frac {1}{4}}}}\left[\sum _{n=0}^{\infty }{\dfrac {(-1)^{n}\Gamma (2n+{\frac {11}{6}})\Gamma (2n+{\frac {7}{6}})\left({\frac {3}{4}}\right)^{2n+1}}{2\pi (2n+1)!z^{3n+3/2}}}\right]\end{aligned}}} で与えられる。 |arg(z)| = 0 のとき、これらは良い近似であるが漸近的でない(Ai(−z) または Bi(−z) と上記の近似式との比は、現れる正弦および余弦の値が零となるところで無限大に発散することによる)。これらの極限に対する漸近展開も可能である。それらについては (Abramowitz & Stegun 1954) および (Olver 1974) にある。
※この「漸近公式」の解説は、「エアリー関数」の解説の一部です。
「漸近公式」を含む「エアリー関数」の記事については、「エアリー関数」の概要を参照ください。
- 漸近公式のページへのリンク