漸近公式とは? わかりやすく解説

漸近公式

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/03/07 06:59 UTC 版)

エアリー関数」の記事における「漸近公式」の解説

後述のように、エアリー函数複素数平面上へ延長することができて整函数与える。そのエアリー函数偏角 arg(z)一定値を保ったまま |z| を無限大へ飛ばすときの漸近挙動arg(z)依存して決まる(これをストークス現象英語版と言う)。|arg(z)| < π のとき、Ai(z) に対して以下の漸近公式 Ai( z ) ∼ e − 2 3 z 3 2 2 π z 1 4 [ ∑ n = 0 ∞ ( − 1 ) n Γ ( n + 5 6 ) Γ ( n + 1 6 ) ( 3 4 ) n 2 π n ! z 3 n / 2 ] {\displaystyle \operatorname {Ai} (z)\sim {\dfrac {e^{-{\frac {2}{3}}z^{\frac {3}{2}}}}{2{\sqrt {\pi }}\,z^{\frac {1}{4}}}}\left[\sum _{n=0}^{\infty }{\dfrac {(-1)^{n}\Gamma (n+{\frac {5}{6}})\Gamma (n+{\frac {1}{6}})\left({\frac {3}{4}}\right)^{n}}{2\pi n!z^{3n/2}}}\right]} を得る。Bi(z) に対して同様の漸近公式 Bi( z )e 2 3 z 3 2 π z 1 4 [ ∑ n = 0 ∞ Γ ( n + 5 6 ) Γ ( n + 1 6 ) ( 3 4 ) n 2 π n ! z 3 n / 2 ] {\displaystyle \operatorname {Bi} (z)\sim {\frac {e^{{\frac {2}{3}}z^{\frac {3}{2}}}}{{\sqrt {\pi }}\,z^{\frac {1}{4}}}}\left[\sum _{n=0}^{\infty }{\dfrac {\Gamma (n+{\frac {5}{6}})\Gamma (n+{\frac {1}{6}})\left({\frac {3}{4}}\right)^{n}}{2\pi n!z^{3n/2}}}\right]} 存在するが |arg(z)| < π/3 でしか適用できない。 π/3 < |arg(z)| < π のときのより正確な Ai(z) および Bi(z)対する公式、あるいは同じことだが |arg(z)| < 2π/3 だがでないときの Ai(−z) および Bi(−z) の漸近近似A i ( − z ) ∼ sin ⁡ ( 2 3 z 3 2 + π 4 ) π z 1 4 [ ∑ n = 0 ∞ ( − 1 ) n Γ ( 2 n + 5 6 ) Γ ( 2 n + 1 6 ) ( 3 4 ) 2 n 2 π ( 2 n ) ! z 3 n ] − cos ⁡ ( 2 3 z 3 2 + π 4 ) π z 1 4 [ ∑ n = 0 ∞ ( − 1 ) n Γ ( 2 n + 11 6 ) Γ ( 2 n + 7 6 ) ( 3 4 ) 2 n + 1 2 π ( 2 n + 1 ) ! z 3 n + 3 / 2 ] B i ( − z ) ∼ cos ⁡ ( 2 3 z 3 2 + π 4 ) π z 1 4 [ ∑ n = 0 ∞ ( − 1 ) n Γ ( 2 n + 5 6 ) Γ ( 2 n + 1 6 ) ( 3 4 ) 2 n 2 π ( 2 n ) ! z 3 n ] + sin ⁡ ( 2 3 z 3 2 + π 4 ) π z 1 4 [ ∑ n = 0 ∞ ( − 1 ) n Γ ( 2 n + 11 6 ) Γ ( 2 n + 7 6 ) ( 3 4 ) 2 n + 1 2 π ( 2 n + 1 ) ! z 3 n + 3 / 2 ] {\displaystyle {\begin{aligned}\mathrm {Ai} (-z)\sim &{}{\frac {\sin \left({\frac {2}{3}}z^{\frac {3}{2}}+{\frac {\pi }{4}}\right)}{{\sqrt {\pi }}\,z^{\frac {1}{4}}}}\left[\sum _{n=0}^{\infty }{\dfrac {(-1)^{n}\Gamma (2n+{\frac {5}{6}})\Gamma (2n+{\frac {1}{6}})\left({\frac {3}{4}}\right)^{2n}}{2\pi (2n)!z^{3n}}}\right]\\[6pt]&{}-{\frac {\cos \left({\frac {2}{3}}z^{\frac {3}{2}}+{\frac {\pi }{4}}\right)}{{\sqrt {\pi }}\,z^{\frac {1}{4}}}}\left[\sum _{n=0}^{\infty }{\dfrac {(-1)^{n}\Gamma (2n+{\frac {11}{6}})\Gamma (2n+{\frac {7}{6}})\left({\frac {3}{4}}\right)^{2n+1}}{2\pi (2n+1)!z^{3n+3/2}}}\right]\\[6pt]\mathrm {Bi} (-z)\sim &{}{\frac {\cos \left({\frac {2}{3}}z^{\frac {3}{2}}+{\frac {\pi }{4}}\right)}{{\sqrt {\pi }}\,z^{\frac {1}{4}}}}\left[\sum _{n=0}^{\infty }{\dfrac {(-1)^{n}\Gamma (2n+{\frac {5}{6}})\Gamma (2n+{\frac {1}{6}})\left({\frac {3}{4}}\right)^{2n}}{2\pi (2n)!z^{3n}}}\right]\\[6pt]&{}+{\frac {\sin \left({\frac {2}{3}}z^{\frac {3}{2}}+{\frac {\pi }{4}}\right)}{{\sqrt {\pi }}\,z^{\frac {1}{4}}}}\left[\sum _{n=0}^{\infty }{\dfrac {(-1)^{n}\Gamma (2n+{\frac {11}{6}})\Gamma (2n+{\frac {7}{6}})\left({\frac {3}{4}}\right)^{2n+1}}{2\pi (2n+1)!z^{3n+3/2}}}\right]\end{aligned}}} で与えられる。 |arg(z)| = 0 のとき、これらは良い近似であるが漸近的でない(Ai(−z) または Bi(−z) と上記近似式との比は、現れる正弦および余弦の値がとなるところで無限大発散することによる)。これらの極限対す漸近展開も可能である。それらについては (Abramowitz & Stegun 1954) および (Olver 1974) にある。

※この「漸近公式」の解説は、「エアリー関数」の解説の一部です。
「漸近公式」を含む「エアリー関数」の記事については、「エアリー関数」の概要を参照ください。

ウィキペディア小見出し辞書の「漸近公式」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「漸近公式」の関連用語

漸近公式のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



漸近公式のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaのエアリー関数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS