射影幾何における双対原理
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/02/10 06:09 UTC 版)
「射影幾何学」の記事における「射影幾何における双対原理」の解説
詳細は「射影幾何の双対原理」を参照 1825年にジョセフ・ジェルゴンヌは、射影平面幾何を特徴付ける双対性の原理について記している。これは、射影幾何の任意の定義あるいは定理において、「点」と「直線」、「—の上にある」と「—を通る」、「共線」と「共点」、「交わり」と「結び」をいっせいに互いに入れ替えたとき、結果として得られる命題は定理であり、得られる定義は意味のあるものとなるというものである。このとき得られた定理や定義は、もとのものの「双対」であると言われる。三次元においても同様で、点と平面に関する双対性が成り立つので、任意の定理において「点」と「平面」、「—を含む」と「—に含まれる」を入れ替えることで別な定理に書き換えることができる。もっと一般に、次元 N の射影空間に対して、次元 R の部分空間と次元 N − R −1 の部分空間との間に双対性が存在する。N = 2 の場合を考えれば、これは最もよく知られた形の、点と直線の間の双対性に特殊化される。この双対原理はジャン=ヴィクトル・ポンスレも独立に発見している。 双対性を示すには、問題にしている次元に対する公理系の双対版となる各命題が真であることを示すだけで十分である。故に、三次元射影空間に対しては、(1*) 各点は相異なる三平面の上にある、(2*) 任意の二平面はただ一つの直線で交わる、(3*) 二平面 P, Q の交わりと別の二平面 R, S の交わりとが共面であるならば、P と R との交わりと Q と S との交わりも共面である(ただし、平面 P と S は Q と R と異なるものとする)の三つを示す必要がある。 実用上、双対原理を使えば二つの幾何学的構成の間の「双対対応」を構築することができるようになる。そのようなものの中で最もよく知られたものは、円錐曲線(二次元の場合)あるいは二次曲面(三次元の場合)における二つの図形の両極性もしくは相互関係である。ありふれた例が、双対多面体を得るための同心球における対称多面体の相互関係に見つかる。
※この「射影幾何における双対原理」の解説は、「射影幾何学」の解説の一部です。
「射影幾何における双対原理」を含む「射影幾何学」の記事については、「射影幾何学」の概要を参照ください。
- 射影幾何における双対原理のページへのリンク