完全回帰型
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/11/16 07:46 UTC 版)
「回帰型ニューラルネットワーク」の記事における「完全回帰型」の解説
基本的なRNNは連続する「層」へと編成されたニューロン的ノードのネットワークであり、所定の層中の個々のノードは次の層中の全てのノードと有向(一方向)結合により結合されている[要出典]。個々のノード(ニューロン)は時間変動する実数値の活性化を有する。個々の結合(シナプス)は変更可能な実数値の重み(英語版)を有する。ノードは(ネットワーク外からデータを受け取る)入力ノード、(結果を得る)出力ノード、(入力から出力への途上でデータを修正する)隠れノードのいずれかである。 離散時間設定における教師あり学習のため、実数値入力ベクトルの配列は入力ノードに到着する(一度に1つのベクトル)。任意の時間ステップにおいて、個々の非入力ユニットはそれに結合した全てのユニットの活性化の加重和の非線形関数としてその現在の活性化(結果)を計算する。ある時間ステップにおける一部の出力ユニットのために教師が与えられた目標活性化を提供することができる。例えば、入力配列が数字音声に対応した音声シグナルであるならば、配列の最後における最終目標出力は数字を分類するラベルとなるだろう。 強化学習のセッティングでは、教師は目標シグナルを与えない。代わりに、適合度関数(英語版)または報酬関数がRNNの性能を評価するために使われることがある。これは環境に影響を与えるアクチュエータに結合された出力ユニットを通してその入力ストリームに影響する。これは、進行が勝ち取った点数によって測定されるゲームをプレーするために使うことができるかもしれない。 個々の配列は、全ての目標シグナルのネットワークによって計算された対応する活性化からのずれの和として誤差を生じる。膨大な配列のセットを訓練では、全誤差は全ての個別の配列の誤差の和である。
※この「完全回帰型」の解説は、「回帰型ニューラルネットワーク」の解説の一部です。
「完全回帰型」を含む「回帰型ニューラルネットワーク」の記事については、「回帰型ニューラルネットワーク」の概要を参照ください。
- 完全回帰型のページへのリンク